Integrative Molecular Phenotyping
INTEGRATIVE MOLECULAR
PHENOTYPING
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY

PubMed

Human forebrain organoids-based multi-omics analyses reveal PCCB's regulation on GABAergic system contributing to schizophrenia

Mon, 10/04/2023 - 12:00
Res Sq. 2023 Mar 29:rs.3.rs-2674668. doi: 10.21203/rs.3.rs-2674668/v1. Preprint.ABSTRACTIdentifying genes whose expression is associated with schizophrenia (SCZ) risk by transcriptome-wide association studies (TWAS) facilitates downstream experimental studies. Here, we integrated multiple published datasets of TWAS (including FUSION, PrediXcan, summary-data-based Mendelian randomization (SMR), joint-tissue imputation approach with Mendelian randomization (MR-JTI)), gene coexpression, and differential gene expression analysis to prioritize SCZ candidate genes for functional study. Convergent evidence prioritized Propionyl-CoA Carboxylase Subunit Beta ( PCCB ), a nuclear-encoded mitochondrial gene, as an SCZ risk gene. However, the PCCB ’s contribution to SCZ risk has not been investigated before. Using dual luciferase reporter assay, we identified that SCZ-associated SNP rs35874192, an eQTL SNP for PCCB , showed differential allelic effects on transcriptional activities. PCCB knockdown in human forebrain organoids (hFOs) followed by RNA-seq revealed dysregulation of genes enriched with multiple neuronal functions including gamma-aminobutyric acid (GABA)-ergic synapse, as well as genes dysregulated in postmortem brains of SCZ patients or in cerebral organoids derived from SCZ patients. The metabolomic and mitochondrial function analyses confirmed the deceased GABA levels resulted from reduced tricarboxylic acid cycle in PCCB knockdown hFOs. Multielectrode array recording analysis showed that PCCB knockdown in hFOs resulted into SCZ-related phenotypes including hyper-neuroactivities and decreased synchronization of neural network. In summary, this study utilized hFOs-based multi-omics data and revealed that PCCB downregulation may contribute to SCZ risk through regulating GABAergic system, highlighting the mitochondrial function in SCZ.PMID:37034773 | PMC:PMC10081387 | DOI:10.21203/rs.3.rs-2674668/v1

IDSL.GOA: Gene Ontology Analysis for Metabolomics

Mon, 10/04/2023 - 12:00
bioRxiv. 2023 Mar 30:2023.03.25.534225. doi: 10.1101/2023.03.25.534225. Preprint.ABSTRACTBiological interpretation of metabolomics datasets often ends at a pathway analysis step to find the over-represented metabolic pathways in the list of statistically significant metabolites. However, definitions of biochemical pathways and metabolite coverage vary among different curated databases, leading to inaccurate and contradicting interpretations. For the lists of gene, transcripts and proteins, Gene Ontology (GO) terms over-presentation analysis has become a standardized approach for the biological interpretation. GO terms are not limited to predefined pathways but can also include relevant metabolic processes that are not included in pathway databases. Despite the several advantages of GO terms over traditional pathway maps, GO analysis has not been achieved for metabolomics datasets. To overcome this, we present a new knowledgebase and the online tool, Gene Ontology Analysis by the Integrated Data Science Laboratory for Metabolomics and Exposomics (IDSL.GOA) to conduct GO over-representation analysis for a metabolite list. The IDSL.GOA knowledgebase covers 2,324 metabolic GO terms and associated 2,818 genes, 22,264 transcripts, 20,158 proteins, 1,482 EC annotations, 2,430 reactions and 2,212 metabolites. IDSL.GOA analysis of a case study of older vs young female brain cortex metabolome highlighted over 250 GO terms being significantly overrepresented (FDR <0.05). The analysis suggested that in the older female brain cortex region, nucleotide salvage processes are severely affected. On contrast, for the same metabolite list, MetaboAnalyst and Reactome Pathway Analysis suggested less than 5 pathways at FDR <0.05, and none of them were related to nucleotide salvage pathways. We showed how IDSL.GOA identified key and relevant GO metabolic processes that were not mentioned by alternative pathway analysis approaches. Overall, we suggest that metabolomics researchers should not limit the interpretation of metabolite lists to only pathway maps and can also leverage GO terms as well. IDSL.GOA provides a powerful tool for this purpose, allowing for a more comprehensive and accurate analysis of metabolite pathway data. IDSL.GOA tool can be accessed at https://goa.idsl.me/.PMID:37034715 | PMC:PMC10081191 | DOI:10.1101/2023.03.25.534225

Untargeted metabolomics profiling in pediatric patients and adult populations indicates a connection between lipid imbalance and epilepsy

Mon, 10/04/2023 - 12:00
medRxiv. 2023 Mar 30:2023.03.29.23287640. doi: 10.1101/2023.03.29.23287640. Preprint.ABSTRACTINTRODUCTION: Epilepsy is a common central nervous system disorder characterized by abnormal brain electrical activity. We aimed to compare the metabolic profiles of plasma from patients with epilepsy across different etiologies, seizure frequency, seizure type, and patient age to try to identify common disrupted pathways.MATERIAL AND METHODS: We used data from three separate cohorts. The first cohort (PED-C) consisted of 31 pediatric patients with suspicion of a genetic disorder with unclear etiology; the second cohort (AD-C) consisted of 250 adults from the Estonian Biobank (EstBB), and the third cohort consisted of 583 adults ≥ 69 years of age from the EstBB (ELD-C). We compared untargeted metabolomics and lipidomics data between individuals with and without epilepsy in each cohort.RESULTS: In the PED-C, significant alterations (p-value <0.05) were detected in sixteen different glycerophosphatidylcholines (GPC), dimethylglycine and eicosanedioate (C20-DC). In the AD-C, nine significantly altered metabolites were found, mainly triacylglycerides (TAG), which are also precursors in the GPC synthesis pathway. In the ELD-C, significant changes in twenty metabolites including multiple TAGs were observed in the metabolic profile of participants with previously diagnosed epilepsy. Pathway analysis revealed that among the metabolites that differ significantly between epilepsy-positive and epilepsy-negative patients in the PED-C, the lipid superpathway (p = 3.2*10-4) and phosphatidylcholine (p = 9.3*10-8) and lysophospholipid (p = 5.9*10-3) subpathways are statistically overrepresented. Analogously, in the AD-C, the triacylglyceride subclass turned out to be statistically overrepresented (p = 8.5*10-5) with the lipid superpathway (p = 1.4*10-2). The presented p-values are FDR-corrected.CONCLUSION: Our results suggest that cell membrane fluidity may have a significant role in the mechanism of epilepsy, and changes in lipid balance may indicate epilepsy. However, further studies are needed to evaluate whether untargeted metabolomics analysis could prove helpful in diagnosing epilepsy earlier.PMID:37034709 | PMC:PMC10081398 | DOI:10.1101/2023.03.29.23287640

Metabolomic Evaluation of Air Pollution-related Bone Damage and Potential Mediation

Mon, 10/04/2023 - 12:00
Res Sq. 2023 Mar 28:rs.3.rs-2652887. doi: 10.21203/rs.3.rs-2652887/v1. Preprint.ABSTRACTAmbient air pollution has been associated with bone damage. However, no studies have evaluated the metabolomic response to air pollutants and its potential influence on bone health in postmenopausal women. We analyzed data from WHI participants with plasma samples. Whole-body, total hip, femoral neck, and spine BMD at enrollment and follow-up (Y1, Y3, Y6). Daily particulate matter NO, NO 2 , PM 10 and SO 2 were averaged over 1-, 3-, and 5-year periods before metabolomic assessments. Statistical analyses included multivariable-adjusted linear mixed models, pathways analyses, and mediation modeling. NO, NO 2 , and SO 2 , but not PM 10 , were associated with taurine, inosine, and C38:4 phosphatidylethanolamine (PE), at all averaging periods. We found a partial mediation of C38:4 PE in the association between 1-year average NO and lumbar spine BMD ( p -value: 0.032). This is the first study suggesting that a PE may partially mediate air pollution-related bone damage in postmenopausal women.PMID:37034583 | PMC:PMC10081369 | DOI:10.21203/rs.3.rs-2652887/v1

Therapeutic targeting of ACLY in T-ALL <em>in vivo</em>

Mon, 10/04/2023 - 12:00
bioRxiv. 2023 Mar 28:2023.03.27.534395. doi: 10.1101/2023.03.27.534395. Preprint.ABSTRACTT-cell Acute Lymphoblastic Leukemia (T-ALL) is a hematological malignancy in need of novel therapeutic approaches. Here, we identify the ATP-citrate lyase ACLY as a novel therapeutic target in T-ALL. Our results show that ACLY is overexpressed in T-ALL, and its expression correlates with NOTCH1 activity. To test the effects of ACLY in leukemia progression and the response to NOTCH1 inhibition, we developed an isogenic model of NOTCH1-induced Acly conditional knockout leukemia. Importantly, we observed intrinsic antileukemic effects upon loss of ACLY, which further synergized with NOTCH1 inhibition in vivo . Gene expression profiling analyses showed that the transcriptional signature of ACLY loss very significantly correlates with the signature of NOTCH1 inhibition in vivo , with significantly downregulated pathways related to oxidative phosphorylation, electron transport chain, ribosomal biogenesis and nucleosome biology. Consistently, metabolomic profiling upon ACLY loss revealed a metabolic crisis with accumulation of nucleotide intermediates and reduced levels of several amino acids. Overall, our results identify a link between NOTCH1 and ACLY and unveil ACLY as a novel promising target for T-ALL treatment.PMID:37034581 | PMC:PMC10081278 | DOI:10.1101/2023.03.27.534395

Study on the relationship between selenium and cadmium in diseased human lungs

Mon, 10/04/2023 - 12:00
Adv Redox Res. 2023 Apr;7:100065. doi: 10.1016/j.arres.2023.100065. Epub 2023 Feb 18.ABSTRACTCadmium (Cd) is a toxic environmental metal that interacts with selenium (Se) and contributes to many lung diseases. Humans have widespread exposures to Cd through diet and cigarette smoking, and studies in rodent models show that Se can protect against Cd toxicities. We sought to identify whether an antagonistic relationship existed between Se and Cd burdens and determine whether this relationship may associate with metabolic variation within human lungs. We performed metabolomics of 31 human lungs, including 25 with end-stage lung disease due to idiopathic pulmonary fibrosis, cystic fibrosis, chronic obstructive lung disease (COPD)/emphysema and other causes, and 6 non-diseased lungs. Results showed pathway associations with Cd including amino acid, lipid and energy-related pathways. Metabolic pathways varying with Se had considerable overlap with these pathways. Hierarchical cluster analysis (HCA) of individuals according to metabolites associated with Cd showed partial separation of disease types, with COPD/emphysema in the cluster with highest Cd, and non-diseased lungs in the cluster with the lowest Cd. When compared to HCA of metabolites associated with Se, the results showed that the cluster containing COPD/emphysema had the lowest Se, and the non-diseased lungs had the highest Se. A greater number of pathway associations occurred for Cd to Se ratio than either Cd or Se alone, indicating that metabolic patterns were more dependent on Cd to Se ratio than on either alone. Network analysis of interactions of Cd and Se showed network centrality was associated with pathways linked to polyunsaturated fatty acids involved in inflammatory signaling. Overall, the data show that metabolic pathway responses in human lung vary with Cd and Se in a pattern suggesting that Se is antagonistic to Cd toxicity in humans.PMID:37034445 | PMC:PMC10078579 | DOI:10.1016/j.arres.2023.100065

Advances and potential of omics studies for understanding the development of food allergy

Mon, 10/04/2023 - 12:00
Front Allergy. 2023 Mar 24;4:1149008. doi: 10.3389/falgy.2023.1149008. eCollection 2023.ABSTRACTThe prevalence of food allergy continues to rise globally, carrying with it substantial safety, economic, and emotional burdens. Although preventative strategies do exist, the heterogeneity of allergy trajectories and clinical phenotypes has made it difficult to identify patients who would benefit from these strategies. Therefore, further studies investigating the molecular mechanisms that differentiate these trajectories are needed. Large-scale omics studies have identified key insights into the molecular mechanisms for many different diseases, however the application of these technologies to uncover the drivers of food allergy development is in its infancy. Here we review the use of omics approaches in food allergy and highlight key gaps in knowledge for applying these technologies for the characterization of food allergy development.PMID:37034151 | PMC:PMC10080041 | DOI:10.3389/falgy.2023.1149008

Protective effects of <em>Bacillus licheniformis</em> on growth performance, gut barrier functions, immunity and serum metabolome in lipopolysaccharide-challenged weaned piglets

Mon, 10/04/2023 - 12:00
Front Immunol. 2023 Mar 22;14:1140564. doi: 10.3389/fimmu.2023.1140564. eCollection 2023.ABSTRACTBacillus licheniformis (B. licheniformis) is a well-accepted probiotic that has many benefits on both humans and animals. This study explored the effects of B. licheniformis on growth performance, intestinal mucosal barrier functions, immunity as well as serum metabolome in the weaned piglets exposed to lipopolysaccharide (LPS). One hundred and twenty piglets weaned at four weeks of age were separated into two groups that received a basal diet (the control group, CON), and a basal diet complemented with B. licheniformis (500 mg/kg, the BL group, BL). Twenty-four piglets were chosen from the above two groups and 12 piglets were injected with LPS intraperitoneally at a concentration of 100 μg/kg and the others were injected with sterile saline solution of the same volume. All the piglets were sacrificed 4 h after LPS challenge. Results showed that B. licheniformis enhanced the ADG and final body weight and lowered the F/G and diarrhea rate. Pre-treatment with B. licheniformis markedly attenuated intestinal mucosal damage induced by LPS challenge. Supplementation with B. licheniformis strengthened immune function and suppressed inflammatory response by elevating the concentrations of serum immunoglobulin (Ig) A and jejunum mucosal IgA and IgG and decreasing serum IL-6 and jejunum mucosal IL-1β. In addition, B. licheniformis pretreatment prevented LPS-induced intestinal injury by regulating the NLRP3 inflammasome. Furthermore, pretreatment with B. licheniformis tended to reverse the reduction of acetate and propionic acids in the colonic contents that occurred due to LPS stress. B. licheniformis markedly modulated the metabolites of saccharopine and allantoin from lysine and purine metabolic pathways, respectively. Overall, these data emphasize the potentiality of B. licheniformis as a dietary supplement to overcome the challenge of bacterial LPS in the animal and to enhance the food safety.PMID:37033995 | PMC:PMC10073459 | DOI:10.3389/fimmu.2023.1140564

Psychobiotic <em>Lactobacillus plantarum</em> JYLP-326 relieves anxiety, depression, and insomnia symptoms in test anxious college <em>via</em> modulating the gut microbiota and its metabolism

Mon, 10/04/2023 - 12:00
Front Immunol. 2023 Mar 23;14:1158137. doi: 10.3389/fimmu.2023.1158137. eCollection 2023.ABSTRACTINTRODUCTION: Test anxiety is a common issue among college students, which can affect their physical and psychological health. However, effective interventions or therapeutic strategies are still lacking. This study aims to evaluate the potential effects of Lactobacillus plantarum JYLP-326 on test anxious college students.METHODS: Sixty anxious students were enrolled and randomly allocated to the placebo group and the probiotic group. Both groups were instructed to take placebo and JYLP-326 products twice per day for three weeks, respectively. Thirty unanxious students with no treatments were assigned to a regular control group. The anxiety, depression, and insomnia questionnaires were used to measure students' mental states at the baseline and the end of this study. 16S rRNA sequencing and untargeted metabolomics were performed to analyze the changes in the gut microbiota and fecal metabolism.RESULTS: The questionnaire results suggested that JYLP-326 administration could relieve the symptoms of anxiety, depression, and insomnia in test anxious students. The gut microbiomes of the placebo group showed a significantly greater diversity index than the control group (p < 0.05). An increased abundance of Bacteroides and Roseburia at the genus level was observed in the placebo group, and the relative abundance of Prevotella and Bifidobacterium decreased. Whereas, JYLP-326 administration could partly restore the disturbed gut microbiota. Additionally, test anxiety was correlated with disordered fecal metabolomics such as a higher Ethyl sulfate and a lower Cyclohexylamine, which could be reversed after taking JYLP-326. Furthermore, the changed microbiota and fecal metabolites were significantly associated with anxiety-related symptoms.CONCLUSION: The results indicate that the intervention of L. plantarum JYLP-326 could be an effective strategy to alleviate anxiety, depression, and insomnia in test anxious college students. The potential mechanism underlying this effect could be related to the regulation of gut microbiota and fecal metabolites.PMID:37033942 | PMC:PMC10077425 | DOI:10.3389/fimmu.2023.1158137

Optimal LC-MS metabolomic profiling reveals emergent changes to monocyte metabolism in response to lipopolysaccharide

Mon, 10/04/2023 - 12:00
Front Immunol. 2023 Mar 23;14:1116760. doi: 10.3389/fimmu.2023.1116760. eCollection 2023.ABSTRACTINTRODUCTION: Immunometabolism examines the links between immune cell function and metabolism. Dysregulation of immune cell metabolism is now an established feature of innate immune cell activation. Advances in liquid chromatography mass spectrometry (LC-MS) technologies have allowed discovery of unique insights into cellular metabolomics. Here we have studied and compared different sample preparation techniques and data normalisation methods described in the literature when applied to metabolomic profiling of human monocytes.METHODS: Primary monocytes stimulated with lipopolysaccharide (LPS) for four hours was used as a study model. Monocytes (n=24) were freshly isolated from whole blood and stimulated for four hours with lipopolysaccharide (LPS). A methanol-based extraction protocol was developed and metabolomic profiling carried out using a Hydrophilic Interaction Liquid Chromatography (HILIC) LC-MS method. Data analysis pipelines used both targeted and untargeted approaches, and over 40 different data normalisation techniques to account for technical and biological variation were examined. Cytokine levels in supernatants were measured by ELISA.RESULTS: This method provided broad coverage of the monocyte metabolome. The most efficient and consistent normalisation method was measurement of residual protein in the metabolite fraction, which was further validated and optimised using a commercial kit. Alterations to the monocyte metabolome in response to LPS can be detected as early as four hours post stimulation. Broad and profound changes in monocyte metabolism were seen, in line with increased cytokine production. Elevated levels of amino acids and Krebs cycle metabolites were noted and decreases in aspartate and β-alanine are also reported for the first time. In the untargeted analysis, 154 metabolite entities were significantly altered compared to unstimulated cells. Pathway analysis revealed the most prominent changes occurred to (phospho-) inositol metabolism, glycolysis, and the pentose phosphate pathway.DISCUSSION: These data report the emergent changes to monocyte metabolism in response to LPS, in line with reports from later time points. A number of these metabolites are reported to alter inflammatory gene expression, which may facilitate the increases in cytokine production. Further validation is needed to confirm the link between metabolic activation and upregulation of inflammatory responses.PMID:37033938 | PMC:PMC10077522 | DOI:10.3389/fimmu.2023.1116760

Temporal Proteomic and Lipidomic Profiles of Cerulein-Induced Acute Pancreatitis Reveal Novel Insights for Metabolic Alterations in the Disease Pathogenesis

Mon, 10/04/2023 - 12:00
ACS Omega. 2023 Mar 21;8(13):12310-12326. doi: 10.1021/acsomega.3c00019. eCollection 2023 Apr 4.ABSTRACTThe pathophysiological mechanisms of acute pancreatitis (AP) are complex and have remained a mystery to date, but metabolism is gradually recognized as an important driver of AP onset and development. We used a cerulein-induced AP mouse model to conduct liquid chromatography-mass spectrometry (LC-MS/MS)-based time-course proteomics and lipidomics in order to better understand the underlying metabolic alterations linked with AP. Results showed that a series of significant changes in proteins over time with a boost in expression were enriched in lipase activity, lipoprotein, and lipids absorption and transport regulation. Furthermore, 16 proteins associated with lipid metabolism and signaling pathways together with the whole lipid species changing profile led to the vital identification of changing law in glycerides, phosphoglycerides, and free fatty acids. In addition to lipid metabolism and regulation-associated proteins, several digestive enzymes and adaptive anti-trypsin, stress response, and energy metabolism-related proteins showed an increment in abundance. Notably, central carbon and branched chain amino acid metabolism were enhanced during 0-24 h from the first cerulein stimulation. Taken together, this integrated proteomics and lipidomics revealed a novel metabolic insight into metabolites transforming rules that might be relevant to their function and drug targets investigation. (Created with Biorender.com.).PMID:37033809 | PMC:PMC10077560 | DOI:10.1021/acsomega.3c00019

A novel alcohol steamed preparation from <em>Gastrodia elata</em> Blume: Pharmacological assessment of a functional food

Mon, 10/04/2023 - 12:00
Front Pharmacol. 2023 Mar 22;14:1092693. doi: 10.3389/fphar.2023.1092693. eCollection 2023.ABSTRACTRhizoma Gastrodia (Orchidaceae; Gastrodia elata Blume), the rhizome of Gastrodia elata Blume (GE), is traditionally used as both a medicinal and functional food, with proven efficacy in treating mental disorders. In traditional processing, GE is washed, steamed with water, dried, and sliced. In this study, a novel processing technology-alcohol steamed GE (AGE) was proposed as an alternative. Totally, 17 compounds were identified in fresh GE and AGE. Compared with fresh GE, the relative content of parishin A and parishin E decreased after alcohol steaming, whereas gastrodin (GAS), p-hydroxylbenzyl alcohol (HBA), Parishin B, and Parishin C were increased. Additionally, the pentobarbital-induced sleep mice model and Chronic Restraint Stress (CRS) model were applied to evaluate the pharmacological effects of fresh GE and steamed GE, and both fresh and steamed GE showed an intensive hypnotic and anti-anxiety effect. Furthermore, the anti-anxiety mechanism based on serum metabolic was investigated and the tryptophan metabolic pathway was considered the response to the anti-anxiety effect of GE. Although the optimization of the processing technology of AGE still needs to be further explored, the current results have provided new thoughts for the processing technology and clinical application of GE.PMID:37033659 | PMC:PMC10073492 | DOI:10.3389/fphar.2023.1092693

Metabonomic analysis of the anti-hepatic fibrosis effect of <em>Ganlong capsules</em>

Mon, 10/04/2023 - 12:00
Front Pharmacol. 2023 Mar 23;14:1122118. doi: 10.3389/fphar.2023.1122118. eCollection 2023.ABSTRACTContext: Hepatic fibrosis is a progressive condition, often attributed to metabolic disorders, which may promote cirrhosis and liver cancer. Ganlong capsules derived from Periplaneta Americana have been shown to have a therapeutic effect on liver fibrosis but little is known about the molecular mechanisms involved. Objective: To investigate the metabolic modulations produced by Ganlong capsules in liver fibrosis. Methods: A carbon tetrachloride- (CCl4) treated rat model of liver fibrosis was constructed and Ganlong capsules administered. Levels of serum liver enzymes and pathological changes to the liver were evaluated. Non-targeted metabolomics of liver, serum and urine were used to investigate metabolic regulatory mechanisms. Results: Ganlong capsules reduced serum levels of liver enzymes and improved pathological changes in the rat model of fibrosis. Non-targeted metabolomics showed that Ganlong capsules ameliorated pathways of glycerophospholipid, linoleic acid, pyrimidine, glycine, butyric acid, valine, serine, threonine and arachidonic acid metabolism and biosynthesis of leucine and isoleucine. Such pathways influence the development of CCl4-induced liver fibrosis. Conclusion: Ganlong capsules had an anti-fibrotic hepatoprotective effect and regulated lipid, butyric acid, amino acid and arachidonic acid metabolism.PMID:37033612 | PMC:PMC10076698 | DOI:10.3389/fphar.2023.1122118

Peak Pair Pruner: a post-processing software to MS-DIAL for peak pair validation and ratio quantification of isotopic labeling LC-MS(/MS) data

Mon, 10/04/2023 - 12:00
Bioinform Adv. 2023 Mar 27;3(1):vbad044. doi: 10.1093/bioadv/vbad044. eCollection 2023.ABSTRACTMOTIVATION: Isotopic labeling is an essential relative quantification strategy in mass spectrometry-based metabolomics, ideal for studying large cohorts by minimizing common sources of variations in quantitation. MS-DIAL is a free and popular general metabolomics platform that has isotopic labeling data processing capabilities but lacks features provided by other software specialized for isotopic labeling data analysis, such as isotopic pair validation and tabular light-to-heavy peak ratio reporting.RESULTS: We developed Peak Pair Pruner (PPP), a standalone Python program for post-processing of MS-DIAL alignment matrixes. PPP provides these missing features and innovation including isotopic overlap subtraction based on a light-tagged pool sample as quality control. The MS-DIAL+PPP workflow for isotopic labeling-based metabolomics data processing was validated using light and heavy dansylated amino acid standard mixture and metabolite extract from human plasma.AVAILABILITY AND IMPLEMENTATION: Peak Pair Pruner is freely available on Github: https://github.com/QibinZhangLab/Peak_Pair_Pruner. Raw MS data and .ibf files analyzed are on Metabolomics Workbench with Study ID ST002427.CONTACT: q_zhang2@uncg.edu.SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics Advances online.PMID:37033468 | PMC:PMC10074028 | DOI:10.1093/bioadv/vbad044

Comparison of differential metabolites in brain tissue of aged marmosets and serum of elderly patients after prolonged anesthesia

Mon, 10/04/2023 - 12:00
Front Mol Neurosci. 2023 Mar 24;16:1134239. doi: 10.3389/fnmol.2023.1134239. eCollection 2023.ABSTRACTOBJECTIVE: To compare the differential metabolites in the brain tissue of aged marmosets after long-term anesthesia (≥ 6 h) and the serum of elderly patients by metabolomics methods.METHODS: Six aged marmosets (≥ 8 years old) were divided into two groups: anesthesia and control. The aged monkeys in the anesthesia group were induced with 6-8% sevoflurane and 100% oxygen (2 l/min) for 1-2 min and maintained with 1.5-2.5% sevoflurane and 100% oxygen (2 l/min) for 6 h. In the control group (n = 3), anesthesia was only induced under the same conditions for 1-2 min. The prefrontal cortex tissues of the two groups of aged marmosets were collected for metabolomics detection. Twenty-nine elderly patients (≥ 65 years old) who had undergone surgical anesthesia for more than 6 h were enrolled. Serum samples were collected before and on the first day after surgery for metabolomics analysis. Differential metabolites were compared between human serum and marmoset brain tissue.RESULTS: The changes in lactate and xanthurenic acid in the serum of elderly patients were consistent with those in the brain tissue of aged marmoset monkeys, that is, lactate was up-regulated and xanthurenic acid was down-regulated. However, serum levels of 5-methylterahydrofolic acid and leucine were down-regulated in elderly patients after anesthesia. In contrast, 5-methylterahydrofolic acid and leucine levels were up-regulated in the prefrontal cortex of aged marmosets compared with control marmosets. Furthermore, glycolysis/gluconeogenesis and pentose phosphate pathway were both significantly enriched in the prefrontal cortex of aged marmosets and serum of elderly patients after surgery.CONCLUSION: The changes of serum metabolites in elderly patients are not exactly the same as the metabolic changes of brain tissues in aged marmosets. The metabolic changes in serum lactate and xanthurenic acid levels can reflect brain tissue metabolism. The enrichment pathways of differential metabolites in the serum of elderly patients and the brain tissue of aged marmosets were partially the same.PMID:37033373 | PMC:PMC10081450 | DOI:10.3389/fnmol.2023.1134239

Metabolomics analysis reveals serum biomarkers in patients with diabetic sarcopenia

Mon, 10/04/2023 - 12:00
Front Endocrinol (Lausanne). 2023 Mar 22;14:1119782. doi: 10.3389/fendo.2023.1119782. eCollection 2023.ABSTRACTINTRODUCTION: Diabetic sarcopenia (DS) is characterized by muscle atrophy, slower nerve conduction, reduced maximum tension generated by skeletal muscle contraction, and slower contraction rate. Hence, DS can cause limb movement degeneration, slow movement, reduced balance, reduced metabolic rate, falls, fractures, etc. Moreover, the relevant early biological metabolites and their pathophysiological mechanism have yet to be characterized.METHOD: The current cross-sectional study employed serum metabolomics analysis to screen potential noninvasive biomarkers in patients with diabetic sarcopenia. A total of 280 diabetic patients were enrolled in the study (n = 39 sarcopenia [DS], n = 241 without sarcopenia [DM]). Ten patients were randomly selected from both groups. Non-targeted metabolomic analysis was performed by ultra-high-performance liquid chromatography-electrospray ionization tandem mass spectrometry.RESULTS: A total of 632 differential metabolites were identified, including 82 that were significantly differentially abundant (P < 0.05, VIP > 1, FC > 1.2 or FC < 0.8). Compared with the DM group, the contents of pentadecanoic acid, 5'-methylthioadenosine (5'-MTA), N,N-dimethylarginine (asymmetric dimethylarginine, ADMA), and glutamine in the DS group were significantly increased, while that of isoxanthohumol was decreased.DISCUSSION: Based on receiver operating characteristic curve analysis, pentadecanoic acid, 5'-MTA, ADMA, and glutamine may serve as potential biomarkers of DS. Moreover, ATP-binding cassette (ABC) transporters and the mammalian target of the rapamycin signaling pathway were found to potentially have important regulatory roles in the occurrence and development of DS (P < 0.05). Collectively, the differential metabolites identified in this study provide new insights into the underlying pathophysiology of DS and serve as a basis for therapeutic interventions.PMID:37033246 | PMC:PMC10073735 | DOI:10.3389/fendo.2023.1119782

Intestinal barrier dysfunction as a key driver of severe COVID-19

Mon, 10/04/2023 - 12:00
World J Virol. 2023 Mar 25;12(2):68-90. doi: 10.5501/wjv.v12.i2.68.ABSTRACTThe intestinal lumen harbors a diverse consortium of microorganisms that participate in reciprocal crosstalk with intestinal immune cells and with epithelial and endothelial cells, forming a multi-layered barrier that enables the efficient absorption of nutrients without an excessive influx of pathogens. Despite being a lung-centered disease, severe coronavirus disease 2019 (COVID-19) affects multiple systems, including the gastrointestinal tract and the pertinent gut barrier function. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can inflict either direct cytopathic injury to intestinal epithelial and endothelial cells or indirect immune-mediated damage. Alternatively, SARS-CoV-2 undermines the structural integrity of the barrier by modifying the expression of tight junction proteins. In addition, SARS-CoV-2 induces profound alterations to the intestinal microflora at phylogenetic and metabolomic levels (dysbiosis) that are accompanied by disruption of local immune responses. The ensuing dysregulation of the gut-lung axis impairs the ability of the respiratory immune system to elicit robust and timely responses to restrict viral infection. The intestinal vasculature is vulnerable to SARS-CoV-2-induced endothelial injury, which simultaneously triggers the activation of the innate immune and coagulation systems, a condition referred to as "immunothrombosis" that drives severe thrombotic complications. Finally, increased intestinal permeability allows an aberrant dissemination of bacteria, fungi, and endotoxin into the systemic circulation and contributes, to a certain degree, to the over-exuberant immune responses and hyper-inflammation that dictate the severe form of COVID-19. In this review, we aim to elucidate SARS-CoV-2-mediated effects on gut barrier homeostasis and their implications on the progression of the disease.PMID:37033148 | PMC:PMC10075050 | DOI:10.5501/wjv.v12.i2.68

"<em>Candidatus</em> Hydrogenisulfobacillus filiaventi" strain R50 gen. nov. sp. nov., a highly efficient producer of extracellular organic compounds from H<sub>2</sub> and CO<sub>2</sub>

Mon, 10/04/2023 - 12:00
Front Microbiol. 2023 Mar 24;14:1151097. doi: 10.3389/fmicb.2023.1151097. eCollection 2023.ABSTRACTProduction of organic molecules is largely depending on fossil fuels. A sustainable alternative would be the synthesis of these compounds from CO2 and a cheap energy source, such as H2, CH4, NH3, CO, sulfur compounds or iron(II). Volcanic and geothermal areas are rich in CO2 and reduced inorganic gasses and therefore habitats where novel chemolithoautotrophic microorganisms for the synthesis of organic compounds could be discovered. Here we describe "Candidatus Hydrogenisulfobacillus filiaventi" R50 gen. nov., sp. nov., a thermoacidophilic, autotrophic H2-oxidizing microorganism, that fixed CO2 and excreted no less than 0.54 mol organic carbon per mole fixed CO2. Extensive metabolomics and NMR analyses revealed that Val, Ala and Ile are the most dominant form of excreted organic carbon while the aromatic amino acids Tyr and Phe, and Glu and Lys were present at much lower concentrations. In addition to these proteinogenic amino acids, the excreted carbon consisted of homoserine lactone, homoserine and an unidentified amino acid. The biological role of the excretion remains uncertain. In the laboratory, we noticed the production under high growth rates (0.034 h-1, doubling time of 20 h) in combination with O2-limitation, which will most likely not occur in the natural habitat of this strain. Nevertheless, this large production of extracellular organic molecules from CO2 may open possibilities to use chemolithoautotrophic microorganisms for the sustainable production of important biomolecules.PMID:37032882 | PMC:PMC10080006 | DOI:10.3389/fmicb.2023.1151097

Long-term simulated microgravity alters gut microbiota and metabolome in mice

Mon, 10/04/2023 - 12:00
Front Microbiol. 2023 Mar 24;14:1100747. doi: 10.3389/fmicb.2023.1100747. eCollection 2023.ABSTRACTSpaceflight and microgravity has a significant impact on the immune, central nervous, bone, and muscle support and cardiovascular systems. However, limited studies are available on the adverse effects of long-term microgravity on the intestinal microbiota, metabolism, and its relationships. In this study, a ground-based simulated microgravity (SMG) mouse model was established to evaluate the impact of long-term microgravity on gut microbiota and metabolome. After 8 weeks of SMG, alterations of the intestinal microbiota and metabolites were detected using 16S rRNA sequencing and untargeted metabolomics. Compared to the control, no significant differences in α-diversity were observed at weeks 2, 4 and 8. Nevertheless, there were clear differences in community structures at different time points. The phylum Verrucomicrobia significantly declined from 2 to 8 weeks of SMG, yet the relative abundance of Actinobacteria and Deferribacteres expanded remarkably at weeks 8. SMG decreased the genus of Allobaculum and increased Bacteroides significantly throughout the period of 8 weeks. Besides, Genus Akkermansia, Gracilibacter, Prevotella, Odoribacter, Rothia, Sporosarcina, Gracilibacter, Clostridium, and Mucispirillum were identified as biomarkers for SMG group. Desulfovibrio_c21_c20, Akkermansia_muciniphila, and Ruminococcus_gnavus dropped at week 2, which tend to recover at week 4, except for Akkermansia_muciniphila. Bacteroides_uniformis and Faecalibacterium_prausnitzii declined significantly, while Ruminococcus_flavefaciens and Mucispirillum_schaedleri elevated at week 8. Furthermore, intestinal metabolome analysis showed that 129 were upregulated and 146 metabolites were downregulated in SMG. Long-term SMG most affected steroid hormone biosynthesis, tryptophan, cysteine, methionine, arginine, proline metabolism, and histidine metabolism. Correlated analysis suggested that the potential beneficial taxa Allobaculum, Akkermansia, and Faecalibacterium were negatively associated with tryptophan, histidine, arginine, and proline metabolism, but positively with steroid hormone biosynthesis. Yet Bacteroides, Lachnospiraceae_Clostridium, Rothia, Bilophila, and Coprococcus were positively correlated with arginine, proline, tryptophan, and histidine metabolism, while negatively associated with steroid hormone biosynthesis. These results suggest that Long-term SMG altered the community of intestinal microbiota, and then further disturbed intestinal metabolites and metabolic pathways, which have great potential to help understand and provide clues for revealing the mechanisms of long-term SMG involved diseases.PMID:37032862 | PMC:PMC10080065 | DOI:10.3389/fmicb.2023.1100747

Glutaminase 1 isoform up-regulation associated with lipid metabolism disorder induced by methyl tertiary-butyl ether in male rats

Mon, 10/04/2023 - 12:00
Ecotoxicol Environ Saf. 2023 Apr 15;255:114763. doi: 10.1016/j.ecoenv.2023.114763. Epub 2023 Mar 14.ABSTRACTMethyl tertiary-butyl ether (MTBE) is a new unleaded gasoline additive, which is considered to be associated with abnormal lipid metabolism in many studies, but the metabolic characteristics and mechanism are still unclear. To observe the characteristics of lipid metabolism induced by MTBE and possible pathways, 21 male Wistar rats got intragastric administration for 24 weeks. The serum lipid metabolism indexes and metabolites were analyzed separately by a biochemical analyzer and untargeted metabolomics. And found that serum high-density lipoprotein cholesterol (HDL-C) levels in the exposure group were significantly reduced, and serum very low-density lipoprotein (VLDL) levels were significantly increased. In untargeted metabolomics, 190 differential metabolites were obtained. Among them, 23 metabolites were found to show the same trend in MTBE exposure groups, which might play a key role in systemic energy metabolism. Further metabolic pathways analysis showed that D-Glutamine, D-glutamate metabolism, and the other three pathways were affected by MTBE significantly. Therefore, we evaluated serum glutamine and glutamate levels and found that MTBE exposure significantly reduced glutamine levels and increased glutamate levels in rat serum and L-02 cells. Further, the key regulatory gene of glutamine metabolism, glutaminase 1 isoform (GLS1), was significantly up-regulated in rat liver and L-02 cells exposed to MTBE. While the effect of glutamine and glutamate metabolism induced by MTBE could be weakened by BPTES, an antagonist of GLS1. In conclusion, our results indicated that MTBE exposure could change the level of glutamine metabolism by promoting GLS1 expression and ultimately lead to abnormal lipid metabolism.PMID:37032576 | DOI:10.1016/j.ecoenv.2023.114763

Pages