Integrative Molecular Phenotyping
INTEGRATIVE MOLECULAR
PHENOTYPING
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY

PubMed

Multi-omics joint analysis reveals how <em>Streptomyces albidoflavus</em> OsiLf-2 assists <em>Camellia oleifera</em> to resist drought stress and improve fruit quality

Mon, 03/04/2023 - 12:00
Front Microbiol. 2023 Mar 17;14:1152632. doi: 10.3389/fmicb.2023.1152632. eCollection 2023.ABSTRACTCamellia oleifera (C. oleifera) is a unique edible oil crop in China cultivated in the hilly southern mountains. Although C. oleifera is classified as a drought-tolerant tree species, drought remains the main factor limiting the growth of C. oleifera in summer and autumn. Using endophytes to improve crop drought tolerance is one effective strategy to meet our growing food crop demand. In this study, we showed that endophyte Streptomyces albidoflavus OsiLf-2 could mitigate the negative impact of drought stress on C. oleifera, thus improving seed, oil, and fruit quality. Microbiome analysis revealed that OsiLf-2 treatment significantly affected the microbial community structure in the rhizosphere soil of C. oleifera, decreasing both the diversity and abundance of the soil microbe. Likewise, transcriptome and metabolome analyses found that OsiLf-2 protected plant cells from drought stress by reducing root cell water loss and synthesizing osmoregulatory substances, polysaccharides, and sugar alcohols in roots. Moreover, we observed that OsiLf-2 could induce the host to resist drought stress by increasing its peroxidase activity and synthesizing antioxidants such as cysteine. A multi-omics joint analysis of microbiomes, transcriptomes, and metabolomes revealed OsiLf-2 assists C. oleifera in resisting drought stress. This study provides theoretical and technical support for future research on endophytes application to enhance the drought resistance, yield, and quality of C. oleifera.PMID:37007482 | PMC:PMC10063849 | DOI:10.3389/fmicb.2023.1152632

Effect of <em>Alcaligenes</em> sp. on corrosion behavior of X65 steel in simulated offshore oilfield-produced water

Mon, 03/04/2023 - 12:00
Front Microbiol. 2023 Mar 17;14:1127858. doi: 10.3389/fmicb.2023.1127858. eCollection 2023.ABSTRACTIn this paper, the effect of Alcaligenes sp. on the corrosion process of X65 steel was investigated by using non-targeted metabolomics techniques for comprehensive characterization of metabolites, combined with surface analysis techniques and electrochemical testing. The results showed that the organic acids produced by Alcaligenes sp. accelerated the corrosion process of X65 steel in the early stage, and the presence of Alcaligenes sp. promoted the deposition of stable corrosion products and minerals in the middle and late stages. In addition, proteoglycans and corrosion inhibiting substances were enriched on the metal surface, which enhanced the stability of the film. The combined effect of multiple factors makes the mixed film of biofilm and corrosion products more dense and complete, which effectively inhibits the corrosion of X65 steel.PMID:37007476 | PMC:PMC10063886 | DOI:10.3389/fmicb.2023.1127858

Purine metabolism regulates <em>Vibrio splendidus</em> persistence associated with protein aggresome formation and intracellular tetracycline efflux

Mon, 03/04/2023 - 12:00
Front Microbiol. 2023 Mar 16;14:1127018. doi: 10.3389/fmicb.2023.1127018. eCollection 2023.ABSTRACTA small subpopulation of Vibrio splendidus AJ01 that was exposed to tetracycline at 10 times the minimal inhibitory concentration (MIC) still survived, named tetracycline-induced persister cells in our previous work. However, the formation mechanisms of persister is largely unknown. Here, we investigated tetracycline-induced AJ01 persister cells by transcriptome analysis and found that the purine metabolism pathway was significantly downregulated, which was consistent with lower levels of ATP, purine, and purine derivatives in our metabolome analysis. Inhibition of the purine metabolism pathway by 6-mercaptopurine (6-MP, inhibits ATP production), increased persister cell formation and accompanied with the decreasing intracellular ATP levels and increasing cells with protein aggresome. On the other hand, the persister cells had reduced intracellular tetracycline concentrations and higher membrane potential after 6-MP treatment. Inhibition of the membrane potential by carbonyl cyanide m-chlorophenyl hydrazone reversed 6-MP-induced persistence and resulted in higher levels of intracellular tetracycline accumulation. Meanwhile, cells with 6-MP treatment increased the membrane potential by dissipating the transmembrane proton pH gradient, which activated efflux to decrease the intracellular tetracycline concentration. Together, our findings show that reduction of purine metabolism regulates AJ01 persistence and is associated with protein aggresome formation and intracellular tetracycline efflux.PMID:37007472 | PMC:PMC10060992 | DOI:10.3389/fmicb.2023.1127018

Association of serum metabolome profile with the risk of breast cancer in participants of the HUNT2 study

Mon, 03/04/2023 - 12:00
Front Oncol. 2023 Mar 16;13:1116806. doi: 10.3389/fonc.2023.1116806. eCollection 2023.ABSTRACTBACKGROUND: The serum metabolome is a potential source of molecular biomarkers associated with the risk of breast cancer. Here we aimed to analyze metabolites present in pre-diagnostic serum samples collected from healthy women participating in the Norwegian Trøndelag Health Study (HUNT2 study) for whom long-term information about developing breast cancer was available.METHODS: Women participating in the HUNT2 study who developed breast cancer within a 15-year follow-up period (BC cases) and age-matched women who stayed breast cancer-free were selected (n=453 case-control pairs). Using a high-resolution mass spectrometry approach 284 compounds were quantitatively analyzed, including 30 amino acids and biogenic amines, hexoses, and 253 lipids (acylcarnitines, glycerides, phosphatidylcholines, sphingolipids, and cholesteryl esters).RESULTS: Age was a major confounding factor responsible for a large heterogeneity in the dataset, hence age-defined subgroups were analyzed separately. The largest number of metabolites whose serum levels differentiated BC cases and controls (82 compounds) were observed in the subgroup of younger women (<45 years old). Noteworthy, increased levels of glycerides, phosphatidylcholines, and sphingolipids were associated with reduced risk of cancer in younger and middle-aged women (≤64 years old). On the other hand, increased levels of serum lipids were associated with an enhanced risk of breast cancer in older women (>64 years old). Moreover, several metabolites could be detected whose serum levels were different between BC cases diagnosed earlier (<5 years) and later (>10 years) after sample collecting, yet these compounds were also correlated with the age of participants. Current results were coherent with the results of the NMR-based metabolomics study performed in the cohort of HUNT2 participants, where increased serum levels of VLDL subfractions were associated with reduced risk of breast cancer in premenopausal women.CONCLUSIONS: Changes in metabolite levels detected in pre-diagnostic serum samples, which reflected an impaired lipid and amino acid metabolism, were associated with long-term risk of breast cancer in an age-dependent manner.PMID:37007110 | PMC:PMC10061137 | DOI:10.3389/fonc.2023.1116806

Metabolomic Profiling of Lungs from Mice Reveals the Variability of Metabolites in <em>Pneumocystis</em> Infection and the Metabolic Abnormalities in BAFF-R-Deficient Mice

Mon, 03/04/2023 - 12:00
J Inflamm Res. 2023 Mar 27;16:1357-1373. doi: 10.2147/JIR.S394608. eCollection 2023.ABSTRACTPURPOSE: The incidence of Pneumocystis pneumonia (PCP) in patients without human immunodeficiency virus (HIV) has been increasing. In this study, we aimed to investigate the metabolic changes in Pneumocystis infection and the metabolic abnormalities in B-cell-activating factor receptor (BAFF-R)-deficient mice with Pneumocystis infection.METHODS: The important function of B cells during Pneumocystis infection is increasingly recognized. In this study, a Pneumocystis-infected mouse model was constructed in BAFF-R-/- mice and wild-type (WT) mice. Lungs of uninfected WT C57BL/6, WT Pneumocystis-infected, and BAFF-R-/- Pneumocystis-infected mice were used for metabolomic analyses to compare the metabolomic profiles among the groups, with the aim of exploring the metabolic influence of Pneumocystis infection and the influence of mature B-cell deficiency during infection.RESULTS: The results indicated that many metabolites, mainly lipids and lipid-like molecules, were dysregulated in Pneumocystis-infected WT mice compared with uninfected WT C57BL/6 mice. The data also demonstrated significant changes in tryptophan metabolism, and the expression levels of key enzymes of tryptophan metabolism, such as indoleamine 2,3-dioxygenase 1 (IDO1), were significantly upregulated. In addition, B-cell development and function might be associated with lipid metabolism. We found a lower level of alitretinoin and the abnormalities of fatty acid metabolism in BAFF-R-/- Pneumocystis-infected mice. The mRNA levels of enzymes associated with fatty acid metabolism in the lung were upregulated in BAFF-R-/- Pneumocystis-infected mice and positively correlated with the level of IL17A, thus suggesting that the abnormalities of fatty acid metabolism may be associated with greater inflammatory cell infiltration in the lung tissue of BAFF-R-/- Pneumocystis-infected mice compared with the WT Pneumocystis-infected mice.CONCLUSION: Our data revealed the variability of metabolites in Pneumocystis-infected mice, suggesting that the metabolism plays a vital role in the immune response to Pneumocystis infection.PMID:37006807 | PMC:PMC10065423 | DOI:10.2147/JIR.S394608

Expanding Knowledge of Methylotrophic Capacity: Structure and Properties of the Rough-Type Lipopolysaccharide from <em>Methylobacterium extorquens</em> and Its Role on Membrane Resistance to Methanol

Mon, 03/04/2023 - 12:00
JACS Au. 2023 Mar 9;3(3):929-942. doi: 10.1021/jacsau.3c00025. eCollection 2023 Mar 27.ABSTRACTThe ability of Methylobacterium extorquens to grow on methanol as the sole carbon and energy source has been the object of intense research activity. Unquestionably, the bacterial cell envelope serves as a defensive barrier against such an environmental stressor, with a decisive role played by the membrane lipidome, which is crucial for stress resistance. However, the chemistry and the function of the main constituent of the M. extorquens outer membrane, the lipopolysaccharide (LPS), is still undefined. Here, we show that M. extorquens produces a rough-type LPS with an uncommon, non-phosphorylated, and extensively O-methylated core oligosaccharide, densely substituted with negatively charged residues in the inner region, including novel monosaccharide derivatives such as O-methylated Kdo/Ko units. Lipid A is composed of a non-phosphorylated trisaccharide backbone with a distinctive, low acylation pattern; indeed, the sugar skeleton was decorated with three acyl moieties and a secondary very long chain fatty acid, in turn substituted by a 3-O-acetyl-butyrate residue. Spectroscopic, conformational, and biophysical analyses on M. extorquens LPS highlighted how structural and tridimensional features impact the molecular organization of the outer membrane. Furthermore, these chemical features also impacted and improved membrane resistance in the presence of methanol, thus regulating membrane ordering and dynamics.PMID:37006758 | PMC:PMC10052234 | DOI:10.1021/jacsau.3c00025

Advances of multi-omics applications in hepatic precancerous lesions and hepatocellular carcinoma: The role of extracellular vesicles

Mon, 03/04/2023 - 12:00
Front Mol Biosci. 2023 Mar 16;10:1114594. doi: 10.3389/fmolb.2023.1114594. eCollection 2023.ABSTRACTDue to the lack of distinct early symptoms and specific biomarkers, most patients with hepatocellular carcinoma (HCC) are usually diagnosed at advanced stages, rendering the treatment ineffective and useless. Therefore, recognition of the malady at precancerous lesions and early stages is particularly important for improving patient outcomes. The interest in extracellular vesicles (EVs) has been growing in recent years with the accumulating knowledge of their multiple cargoes and related multipotent roles in the modulation of immune response and tumor progression. By virtue of the rapid advancement of high-throughput techniques, multiple omics, including genomics/transcriptomics, proteomics, and metabolomics/lipidomics, have been widely integrated to analyze the role of EVs. Comprehensive analysis of multi-omics data will provide useful insights for discovery of new biomarkers and identification of therapeutic targets. Here, we review the attainment of multi-omics analysis to the finding of the potential role of EVs in early diagnosis and the immunotherapy in HCC.PMID:37006626 | PMC:PMC10060991 | DOI:10.3389/fmolb.2023.1114594

Targeted lipidomics data of COVID-19 patients

Mon, 03/04/2023 - 12:00
Data Brief. 2023 Jun;48:109089. doi: 10.1016/j.dib.2023.109089. Epub 2023 Mar 29.ABSTRACTThe dataset provided with this article describes a targeted lipidomics analysis performed on the serum of COVID-19 patients characterized by different degree of severity. As the ongoing pandemic has posed a challenging threat for humanity, the data here presented belong to one of the first lipidomics studies carried out on COVID-19 patients' samples collected during the first pandemic waves. Serum samples were obtained from hospitalized patients with a molecular diagnosis of SARS-CoV-2 infection detected after nasal swab, and categorized as mild, moderate, or severe according to pre-established clinical descriptors. The MS-based targeted lipidomic analysis was performed by MRM using a Triple Quad 5500+ mass spectrometer, and the quantitative data were acquired on a panel of 483 lipids. The characterization of this lipidomic dataset has been outlined using multivariate and univariate descriptive statistics and bioinformatics tools.PMID:37006392 | PMC:PMC10050192 | DOI:10.1016/j.dib.2023.109089

Parasitic nematode secreted phospholipase A<sub>2</sub> suppresses cellular and humoral immunity by targeting hemocytes in <em>Drosophila melanogaster</em>

Mon, 03/04/2023 - 12:00
Front Immunol. 2023 Mar 15;14:1122451. doi: 10.3389/fimmu.2023.1122451. eCollection 2023.ABSTRACTA key aspect of parasitic nematode infection is the nematodes' ability to evade and/or suppress host immunity. This immunomodulatory ability is likely driven by the release of hundreds of excretory/secretory proteins (ESPs) during infection. While ESPs have been shown to display immunosuppressive effects on various hosts, our understanding of the molecular interactions between individual proteins released and host immunity requires further study. We have recently identified a secreted phospholipase A2 (sPLA2) released from the entomopathogenic nematode (EPN) Steinernema carpocapsae we have named Sc-sPLA2. We report that Sc-sPLA2 increased mortality of Drosophila melanogaster infected with Streptococcus pneumoniae and promoted increased bacterial growth. Furthermore, our data showed that Sc-sPLA2 was able to downregulate both Toll and Imd pathway-associated antimicrobial peptides (AMPs) including drosomycin and defensin, in addition to suppressing phagocytosis in the hemolymph. Sc-sPLA2 was also found to be toxic to D. melanogaster with the severity being both dose- and time-dependent. Collectively, our data highlighted that Sc-sPLA2 possessed both toxic and immunosuppressive capabilities.PMID:37006283 | PMC:PMC10050561 | DOI:10.3389/fimmu.2023.1122451

Cholesterol sulfate limits neutrophil recruitment and gut inflammation during mucosal injury

Mon, 03/04/2023 - 12:00
Front Immunol. 2023 Mar 17;14:1131146. doi: 10.3389/fimmu.2023.1131146. eCollection 2023.ABSTRACTDuring mucosal injury, intestinal immune cells play a crucial role in eliminating invading bacteria. However, as the excessive accumulation of immune cells promotes inflammation and delays tissue repair, it is essential to identify the mechanism that limits the infiltration of immune cells to the mucosal-luminal interface. Cholesterol sulfate (CS) is the lipid product of the sulfotransferase SULT2B1 and suppresses immune reactions by inhibiting DOCK2-mediated Rac activation. In this study, we aimed to elucidate the physiological role of CS in the intestinal tract. We found that, in the small intestine and colon, CS is predominantly produced in the epithelial cells close to the lumen. While dextran sodium sulfate (DSS)-induced colitis was exacerbated in Sult2b1-deficient mice with increased prevalence of neutrophils, the elimination of either neutrophils or intestinal bacteria in Sult2b1-deficient mice attenuated disease development. Similar results were obtained when the Dock2 was genetically deleted in Sult2b1-deficient mice. In addition, we also show that indomethacin-induced ulcer formation in the small intestine was exacerbated in Sult2b1-deficient mice and was ameliorated by CS administration. Thus, our results uncover that CS acts on inflammatory neutrophils, and prevents excessive gut inflammation by inhibiting the Rac activator DOCK2. The administration of CS may be a novel therapeutic strategy for inflammatory bowel disease and non-steroidal anti-inflammatory drug-induced ulcers.PMID:37006281 | PMC:PMC10063914 | DOI:10.3389/fimmu.2023.1131146

Assessment of local and systemic signature of eosinophilic esophagitis (EoE) in children through multi-omics approaches

Mon, 03/04/2023 - 12:00
Front Immunol. 2023 Mar 15;14:1108895. doi: 10.3389/fimmu.2023.1108895. eCollection 2023.ABSTRACTBACKGROUND: Eosinophilic oesophagitis (EoE) is a chronic food allergic disorder limited to oesophageal mucosa whose pathogenesis is still only partially understood. Moreover, its diagnosis and follow-up need repeated endoscopies due to absence of non-invasive validated biomarkers. In the present study, we aimed to deeply describe local immunological and molecular components of EoE in well-phenotyped children, and to identify potential circulating EoE-biomarkers.METHODS: Blood and oesophageal biopsies were collected simultaneously from French children with EoE (n=17) and from control subjects (n=15). Untargeted transcriptomics analysis was performed on mRNA extracted from biopsies using microarrays. In parallel, we performed a comprehensive analysis of immune components on both cellular and soluble extracts obtained from both biopsies and blood, using flow cytometry. Finally, we performed non-targeted plasma metabolomics using liquid chromatography coupled to high-resolution mass spectrometry (LC-HRMS). Uni/multivariate supervised and non-supervised statistical analyses were then conducted to identify significant and discriminant components associated with EoE within local and/or systemic transcriptomics, immunologic and metabolomics datasets. As a proof of concept, we conducted multi-omics data integration to identify a plasmatic signature of EoE.RESULTS: French children with EoE shared the same transcriptomic signature as US patients. Network visualization of differentially expressed (DE) genes highlighted the major dysregulation of innate and adaptive immune processes, but also of pathways involved in epithelial cells and barrier functions, and in perception of chemical stimuli. Immune analysis of biopsies highlighted EoE is associated with dysregulation of both type (T) 1, T2 and T3 innate and adaptive immunity, in a highly inflammatory milieu. Although an immune signature of EoE was found in blood, untargeted metabolomics more efficiently discriminated children with EoE from control subjects, with dysregulation of vitamin B6 and various amino acids metabolisms. Multi-blocks integration suggested that an EoE plasma signature may be identified by combining metabolomics and cytokines datasets.CONCLUSIONS: Our study strengthens the evidence that EoE results from alterations of the oesophageal epithelium associated with altered immune responses far beyond a simplistic T2 dysregulation. As a proof of concept, combining metabolomics and cytokines data may provide a set of potential plasma biomarkers for EoE diagnosis, which needs to be confirmed on a larger and independent cohort.PMID:37006253 | PMC:PMC10050742 | DOI:10.3389/fimmu.2023.1108895

Complement as a vital nexus of the pathobiological connectome for acute respiratory distress syndrome: An emerging therapeutic target

Mon, 03/04/2023 - 12:00
Front Immunol. 2023 Mar 17;14:1100461. doi: 10.3389/fimmu.2023.1100461. eCollection 2023.ABSTRACTThe hallmark of acute respiratory distress syndrome (ARDS) pathobiology is unchecked inflammation-driven diffuse alveolar damage and alveolar-capillary barrier dysfunction. Currently, therapeutic interventions for ARDS remain largely limited to pulmonary-supportive strategies, and there is an unmet demand for pharmacologic therapies targeting the underlying pathology of ARDS in patients suffering from the illness. The complement cascade (ComC) plays an integral role in the regulation of both innate and adaptive immune responses. ComC activation can prime an overzealous cytokine storm and tissue/organ damage. The ARDS and acute lung injury (ALI) have an established relationship with early maladaptive ComC activation. In this review, we have collected evidence from the current studies linking ALI/ARDS with ComC dysregulation, focusing on elucidating the new emerging roles of the extracellular (canonical) and intracellular (non-canonical or complosome), ComC (complementome) in ALI/ARDS pathobiology, and highlighting complementome as a vital nexus of the pathobiological connectome for ALI/ARDS via its crosstalking with other systems of the immunome, DAMPome, PAMPome, coagulome, metabolome, and microbiome. We have also discussed the diagnostic/therapeutic potential and future direction of ALI/ARDS care with the ultimate goal of better defining mechanistic subtypes (endotypes and theratypes) through new methodologies in order to facilitate a more precise and effective complement-targeted therapy for treating these comorbidities. This information leads to support for a therapeutic anti-inflammatory strategy by targeting the ComC, where the arsenal of clinical-stage complement-specific drugs is available, especially for patients with ALI/ARDS due to COVID-19.PMID:37006238 | PMC:PMC10064147 | DOI:10.3389/fimmu.2023.1100461

Metabolomic profiling of glucose homeostasis in African Americans: the Insulin Resistance Atherosclerosis Family Study (IRAS-FS)

Mon, 03/04/2023 - 12:00
Metabolomics. 2023 Apr 2;19(4):35. doi: 10.1007/s11306-023-01984-1.ABSTRACTINTRODUCTION: African Americans are at increased risk for type 2 diabetes.OBJECTIVES: This work aimed to examine metabolomic signature of glucose homeostasis in African Americans.METHODS: We used an untargeted liquid chromatography-mass spectrometry metabolomic approach to comprehensively profile 727 plasma metabolites among 571 African Americans from the Insulin Resistance Atherosclerosis Family Study (IRAS-FS) and investigate the associations between these metabolites and both the dynamic (SI, insulin sensitivity; AIR, acute insulin response; DI, disposition index; and SG, glucose effectiveness) and basal (HOMA-IR and HOMA-B) measures of glucose homeostasis using univariate and regularized regression models. We also compared the results with our previous findings in the IRAS-FS Mexican Americans.RESULTS: We confirmed increased plasma metabolite levels of branched-chain amino acids and their metabolic derivatives, 2-aminoadipate, 2-hydroxybutyrate, glutamate, arginine and its metabolic derivatives, carbohydrate metabolites, and medium- and long-chain fatty acids were associated with insulin resistance, while increased plasma metabolite levels in the glycine, serine and threonine metabolic pathway were associated with insulin sensitivity. We also observed a differential ancestral effect of glutamate on glucose homeostasis with significantly stronger effects observed in African Americans than those previously observed in Mexican Americans.CONCLUSION: We extended the observations that metabolites are useful biomarkers in the identification of prediabetes in individuals at risk of type 2 diabetes in African Americans. We revealed, for the first time, differential ancestral effect of certain metabolites (i.e., glutamate) on glucose homeostasis traits. Our study highlights the need for additional comprehensive metabolomic studies in well-characterized multiethnic cohorts.PMID:37005925 | DOI:10.1007/s11306-023-01984-1

Visual analysis of research on traditional Chinese medicine treatment of Alzheimer's disease in recent ten years

Mon, 03/04/2023 - 12:00
Zhongguo Zhong Yao Za Zhi. 2023 Mar;48(6):1673-1681. doi: 10.19540/j.cnki.cjcmm.20221206.501.ABSTRACTThis study employed bibliometrics tools to review the studies of traditional Chinese medicine(TCM) treatment of Alzheimer's disease(AD) in recent ten years, aiming to explore the research status, hotspots, and future trends in this field at home and abroad. The relevant literature published from January 1, 2012 to August 15, 2022 was retrieved from Web of Science and CNKI. CiteSpace 6.1R2 and VOSviewer 1.6.15 were used for the visual analysis of authors, countries, institutions, keywords, journals, etc. A total of 2 254 Chinese articles and 545 English articles were included. The annual number of articles published showed a rising trend with fluctuations. The country with the largest number of relevant articles published and the largest centrality was China. SUN Guo-jie and WANG Qi were the authors publishing the most Chinese articles and English articles, respectively. Hubei University of Chinese Medicine and Beijing University of Chinese Medicine published the most articles in Chinese and English, respectively. Journal of Ethnopharmacology and Neuroscience Letters published the articles with the highest cited frequency and the highest centrality. According to the keywords, the research on TCM treatment of AD mainly focused on the mechanism of action and treatment methods. Metabolomics, intestinal flora, oxidative stress, tau hyperphosphorylation, β-amyloid(Aβ), inflammatory cytokines, and autophagy were the focuses of the research on mechanism of action. Acupuncture, clinical effect, kidney deficiency and phlegm stasis, and dredging governor vessel to revitalize mind were the hotspots of clinical research. This research field is still in the stage of exploration and development. Exchanges and cooperation among institutions should be encouraged to carry out more high-quality basic research on TCM treatment of AD, obtain high-level evidence, and clarify the pathogenesis and prescription mechanism.PMID:37005855 | DOI:10.19540/j.cnki.cjcmm.20221206.501

Mechanism of famous classical formula Huaihua Powder in treatment of ulcerative colitis based on metabonomics

Mon, 03/04/2023 - 12:00
Zhongguo Zhong Yao Za Zhi. 2023 Mar;48(5):1300-1309. doi: 10.19540/j.cnki.cjcmm.20221025.401.ABSTRACTUltra-high performance liquid chromatography-quadrupole-time of flight tandem mass spectrometry(UHPLC-Q-TOF-MS) was employed in this study to observe the effect of Huaihua Powder on the serum metabolites of mice with ulcerative colitis and reveal the mechanism of Huaihua Powder in the treatment of ulcerative colitis. The mouse model of ulcerative colitis was established by dextran sodium sulfate salt(DSS). The therapeutic effect of Huaihua Powder on ulcerative colitis was preliminarily evaluated based on the disease activity index(DAI), colon appearance, colon tissue morphology, and the content of inflammatory cytokines such as tumor necrosis factor-α(TNF-α), interleukin-6(IL-6), and interleukin-1β(IL-1β). UHPLC-Q-TOF-MS was employed to profile the endogenous metabolites of serum samples in blank control group, model group, and low-, medium-, and high-dose Huaihua Powder groups. Multivariate analyses such as principal component analysis(PCA), partial least squares discriminant analysis(PLS-DA), and orthogonal partial least squares discriminant analysis(OPLS-DA) were performed for pattern recognition. Potential biomarkers were screened by Mass Profiler Professional(MPP) B.14.00 with the thresholds of fold change≥2 and P&lt;0.05. The metabolic pathways were enriched by MetaboAnalyst 5.0. The results showed that Huaihua Powder significantly improved the general state and colon tissue morphology of mice with ulcerative colitis, reduced DAI, and lowered the levels of TNF-α, IL-6, and IL-1β in serum. A total of 38 potential biomarkers were predicted to be related to the regulatory effect of Huaihua Powder, which were mainly involved in glycerophospholipid metabolism, glycine, serine, and threonine metabolism, mutual transformation of glucuronic acid, and glutathione metabolism. This study employed metabolomics to analyze the mechanism of Huaihua Powder in the treatment of ulcerative colitis, laying a foundation for the further research.PMID:37005814 | DOI:10.19540/j.cnki.cjcmm.20221025.401

Systematic comparison of two kinds of Bufonis Venenum derived from different Bufo gargarizans subspecies based on metabolomics and antitumor activity

Mon, 03/04/2023 - 12:00
Zhongguo Zhong Yao Za Zhi. 2023 Mar;48(5):1280-1288. doi: 10.19540/j.cnki.cjcmm.20220627.202.ABSTRACTThis paper compared the differences between two kinds of Bufonis Venenum produced by Bufo gargarizans gargarizans and B. gararizans andrewsi, and verified the rationality of the market value orientation of Bufonis Venenum based on the zebrafish mo-del. Twenty batches of Bufonis Venenum from Jiangsu province, Hebei province, Liaoning province, Jilin province, and Liangshan, Sichuan province, including B. gargarizans gargarizans and B. gararizans andrewsi, were collected. The UHPLC-LTQ-Orbitrap-MS combined with principal component analysis was used to compare the differences between two kinds of Bufonis Venenum. According to the limiting conditions of VIP&gt;1, FC&lt;0.5 or FC&gt;2.0, and peak total area ratio&gt;1%, 9 differential markers were determined, which were cinobufagin, cinobufotalin, arenobufagin, resibufogenin, scillaredin A, resibufagin, 3-(N-suberoylargininyl)-arenobufagin, 3-(N-suberoylargininyl)-marinobufagin, and 3-(N-suberoylargininyl)-resibufogenin. The content of 20 batches of Bufonis Venenum was determined according to the Chinese Pharmacopoeia(2020 edition) by high-performance liquid chromatography, and the 2 batches of Bufonis Venenum, CS7(8.99% of total content) and CS9(5.03% of total content), with the largest difference in the total content of the three quality control indexes of the Chinese Pharmacopoeia(bufalin, cinobufagin, and resibufogenin) were selected to evaluate their anti-liver tumor activity based on the zebrafish model. The tumor inhibition rates of the 2 batches were 38.06% and 45.29%, respectively, proving that only using the quality control indexes of the Chinese Pharmacopoeia as the value orientation of Bufonis Venenum market circulation was unreasonable. This research provides data support for the effective utilization of Bufonis Venenum resources and the establishment of a rational quality evaluation system of Bufonis Venenum.PMID:37005812 | DOI:10.19540/j.cnki.cjcmm.20220627.202

Multiplatform Untargeted Metabolomics

Mon, 03/04/2023 - 12:00
Magn Reson Chem. 2023 Apr 2. doi: 10.1002/mrc.5350. Online ahead of print.ABSTRACTMetabolomics samples like human urine or serum contain upwards of a few thousand metabolites, but individual analytical techniques can only characterize a few hundred metabolites at best. The uncertainty in metabolite identification commonly encountered in untargeted metabolomics adds to this low coverage problem. A multiplatform (multiple analytical techniques) approach can improve upon the number of metabolites reliably detected and correctly assigned. This can be further improved by applying synergistic sample preparation along with the use of combinatorial or sequential non-destructive and destructive techniques. Similarly, peak detection and metabolite identification strategies that employ multiple probabilistic approaches have led to better annotation decisions. Applying these techniques also addresses the issues of reproducibility found in single platform methods. Nevertheless, the analysis of large data sets from disparate analytical techniques presents unique challenges. While the general data processing workflow is similar across multiple platforms, many software packages are only fully capable of processing data types from a single analytical instrument. Traditional statistical methods such as principal component analysis were not designed to handle multiple, distinct data sets. Instead, multivariate analysis requires multiblock or other model types for understanding the contribution from multiple instruments. This review summarizes the advantages, limitations, and recent achievements of a multiplatform approach to untargeted metabolomics.PMID:37005774 | DOI:10.1002/mrc.5350

Proteomic Study on Multi-Organ Metastases of Human Ovarian Clear Cell Carcinoma Cell Line in a Xenograft Mouse Model Based on a Novel Sequence-Specific Analysis Strategy

Mon, 03/04/2023 - 12:00
Front Biosci (Landmark Ed). 2023 Mar 16;28(3):53. doi: 10.31083/j.fbl2803053.ABSTRACTBACKGROUND: To investigate the gene regulation of tumor cells in the process of different organ metastasis on a xenograft mouse model and screen the genes involved in the organ-target metastasis of tumor cells.METHODS: A multi-organ metastasis model was constructed with a human ovarian clear cell carcinoma cell line (ES-2) based on a severe immunodeficiency mouse strain (NCG). Differentially expressed tumor proteins among multi-organ metastases were successfully characterized by microliter liquid chromatography-high-resolution mass spectrometry, sequence-specific data analysis and multivariate statistical data analysis. Liver metastases were selected as typical for subsequent bioinformatic analysis. Selected liver metastasis-specific genes in ES-2 cells were validated by sequence-specific quantitation including high resolution-multiple reaction monitoring quantification at protein level and quantitative real-time polymerase chain reaction at mRNA level.RESULTS: From the mass spectrometry data, a total of 4503 human proteins were identified using the sequence-specific data analysis strategy. Of them, 158 proteins were selected as specifically regulated genes in liver metastases for subsequent bioinformatics studies. Based on Ingenuity Pathway Analysis (IPA) pathway analysis and sequence-specific quantitation, Ferritin light chain (FTL), lactate dehydrogenase A (LDHA) and long-chain-fatty-acid-CoA ligase 1 (ACSL1) were finally validated as specifically upregulated proteins in liver metastases.CONCLUSIONS: Our work provides a new approach to analyze gene regulation in tumor metastasis in xenograft mouse model. In presence of a large number of mouse protein interference, we validated the up-regulation of human ACSL1, FTL and LDHA in ES-2 liver metastases, which reflects the adaptive regulation of tumor cells to the liver microenvironment through metabolic reprogramming.PMID:37005747 | DOI:10.31083/j.fbl2803053

The impact of culture systems on the gut microbiota and gut metabolome of bighead carp (Hypophthalmichthys nobilis)

Mon, 03/04/2023 - 12:00
Anim Microbiome. 2023 Apr 1;5(1):20. doi: 10.1186/s42523-023-00239-7.ABSTRACTBACKGROUND: The gut microbiota of fish confers various effects on the host, including health, nutrition, metabolism, feeding behaviour, and immune response. Environment significantly impacts the community structure of fish gut microbiota. However, there is a lack of comprehensive research on the gut microbiota of bighead carp in culture systems. To demonstrate the impact of culture systems on the gut microbiome and metabolome in bighead carp and investigate a potential relationship between fish muscle quality and gut microbiota, we conducted a study using 16S ribosomal ribonucleic acid sequencing, gas chromatography-mass spectrometry, and liquid chromatography-mass spectrometry techniques on bighead carp in three culture systems.RESULTS: Our study revealed significant differences in gut microbial communities and metabolic profiles among the three culture systems. We also observed conspicuous changes in muscle structure. The reservoir had higher gut microbiota diversity indices than the pond and lake. We detected significant differences in phyla and genera, such as Fusobacteria, Firmicutes, and Cyanobacteria at the phylum level, Clostridium sensu stricto 1, Macellibacteroides, Blvii28 wastewater sludge group at the genus level. Multivariate statistical models, including principal component analysis and orthogonal projections to latent structures-discriminant analysis, indicated significant differences in the metabolic profiles. Key metabolites were significantly enriched in metabolic pathways involved in "arginine biosynthesis" and "glycine, serine, and threonine metabolism". Variation partitioning analysis revealed that environmental factors, such as pH, ammonium nitrogen, and dissolved oxygen, were the primary drivers of differences in microbial communities.CONCLUSIONS: Our findings demonstrate that the culture system significantly impacted the gut microbiota of bighead carp, resulting in differences in community structure, abundance, and potential metabolic functions, and altered the host's gut metabolism, especially in pathways related to amino acid metabolism. These differences were influenced substantially by environmental factors. Based on our study, we discussed the potential mechanisms by which gut microbes affect muscle quality. Overall, our study contributes to our understanding of the gut microbiota of bighead carp under different culture systems.PMID:37005679 | DOI:10.1186/s42523-023-00239-7

N-terminal acetylation can stabilize proteins independent of their ubiquitination

Mon, 03/04/2023 - 12:00
Sci Rep. 2023 Apr 1;13(1):5333. doi: 10.1038/s41598-023-32380-3.ABSTRACTThe majority of proteins in mammalian cells are modified by covalent attachment of an acetyl-group to the N-terminus (Nt-acetylation). Paradoxically, Nt-acetylation has been suggested to inhibit as well as to promote substrate degradation. Contrasting these findings, proteome-wide stability measurements failed to detect any correlation between Nt-acetylation status and protein stability. Accordingly, by analysis of protein stability datasets, we found that predicted Nt-acetylation positively correlates with protein stability in case of GFP, but this correlation does not hold for the entire proteome. To further resolve this conundrum, we systematically changed the Nt-acetylation and ubiquitination status of model substrates and assessed their stability. For wild-type Bcl-B, which is heavily modified by proteasome-targeting lysine ubiquitination, Nt-acetylation did not correlate with protein stability. For a lysine-less Bcl-B mutant, however, Nt-acetylation correlated with increased protein stability, likely due to prohibition of ubiquitin conjugation to the acetylated N-terminus. In case of GFP, Nt-acetylation correlated with increased protein stability, as predicted, but our data suggest that Nt-acetylation does not affect GFP ubiquitination. Similarly, in case of the naturally lysine-less protein p16, Nt-acetylation correlated with protein stability, regardless of ubiquitination on its N-terminus or on an introduced lysine residue. A direct effect of Nt-acetylation on p16 stability was supported by studies in NatB-deficient cells. Together, our studies argue that Nt-acetylation can stabilize proteins in human cells in a substrate-specific manner, by competition with N-terminal ubiquitination, but also by other mechanisms that are independent of protein ubiquitination status.PMID:37005459 | DOI:10.1038/s41598-023-32380-3

Pages