Integrative Molecular Phenotyping
INTEGRATIVE MOLECULAR
PHENOTYPING
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY

PubMed

The Tomato Feruloyl Transferase FHT Promoter Is an Accurate Identifier of Early Development and Stress-Induced Suberization

Sat, 13/05/2023 - 12:00
Plants (Basel). 2023 May 5;12(9):1890. doi: 10.3390/plants12091890.ABSTRACTAs a wall polymer, suberin has a multifaceted role in plant development and stress responses. It is deposited between the plasma membrane and the primary cell wall in specialized tissues such as root exodermis, endodermis, phellem, and seed coats. It is formed de novo in response to stresses such as wounding, salt injury, drought, and pathogen attack and is a complex polyester mainly consisting of fatty acids, glycerol, and minor amounts of ferulic acid that are associated to a lignin-like polymer predominantly composed of ferulates. Metabolomic and transcriptomic studies have revealed that cell wall lignification precedes suberin deposition. The ferulic acid esterified to ω-hydroxy fatty acids, synthetized by the feruloyl transferase FHT (or ASFT), presumably plays a role in coupling both polymers, although the precise mechanism is not understood. Here, we use the promoter of tomato suberin feruloyl transferase (FHT/ASFT) fused to GUS (β-glucuronidase) to demonstrate that ferulate deposition agrees with the site of promoter FHT activation by using a combination of histochemical staining and UV microscopy. Hence, FHT promoter activation and alkali UV microscopy can be used to identify the precise localization of early suberizing cells rich in ferulic acid and can additionally be used as an efficient marker of early suberization events during plant development and stress responses. This line can be used in the future as a tool to identify emerging suberization sites via ferulate deposition in tomato plants, which may contribute to germplasm screening in varietal improvement programs.PMID:37176949 | DOI:10.3390/plants12091890

Responses in Nodulated Bean (<em>Phaseolus vulgaris</em> L.) Plants Grown at Elevated Atmospheric CO<sub>2</sub>

Sat, 13/05/2023 - 12:00
Plants (Basel). 2023 Apr 29;12(9):1828. doi: 10.3390/plants12091828.ABSTRACTThe increase in the concentration of CO2 in the atmosphere is currently causing metabolomic and physiological changes in living beings and especially in plants. Future climate change may affect crop productivity by limiting the uptake of soil resources such as nitrogen (N) and water. The contribution of legume-rhizobia symbioses to N2 fixation increases the available biological N reserve. Elevated CO2 (eCO2) has been shown to enhance the amount of fixed N2 primarily by increasing biomass. Greater leaf biomass under eCO2 levels increases N demand, which can stimulate and increase N2 fixation. For this reason, bean plants (Phaseolus vulgaris L.) were used in this work to investigate how, in a CO2-enriched atmosphere, inoculation with rhizobia (Rhizobium leguminosarum) affects different growth parameters and metabolites of carbon and nitrogen metabolism, as well as enzymatic activities of nitrogen metabolism and the oxidative state of the plant, with a view to future scenarios, where the concentration of CO2 in the atmosphere will increase. The results showed that bean symbiosis with R. leguminosarum improved N2 fixation, while also decreasing the plant's oxidative stress, and provided the plant with a greater defense system against eCO2 conditions. In conclusion, the nodulation with rhizobia potentially replaced the chemical fertilization of bean plants (P. vulgaris L.), resulting in more environmentally friendly agricultural practices. However, further optimization of symbiotic activities is needed to improve the efficiency and to also develop strategies to improve the response of legume yields to eCO2, particularly due to the climate change scenario in which there is predicted to be a large increase in the atmospheric CO2 concentration.PMID:37176886 | DOI:10.3390/plants12091828

Glutamate, Humic Acids and Their Combination Modulate the Phenolic Profile, Antioxidant Traits, and Enzyme-Inhibition Properties in Lettuce

Sat, 13/05/2023 - 12:00
Plants (Basel). 2023 Apr 28;12(9):1822. doi: 10.3390/plants12091822.ABSTRACTLettuce (Lactuca sativa L., Asteraceae) is a popular vegetable leafy crop playing a relevant role in human nutrition. Nowadays, novel strategies are required to sustainably support plant growth and elicit the biosynthesis of bioactive molecules with functional roles in crops including lettuce. In this work, the polyphenolic profile of lettuce treated with glutamic acid (GA), humic acid (HA), and their combination (GA + HA) was investigated using an untargeted metabolomics phenolic profiling approach based on high-resolution mass spectrometry. Both aerial and root organ parts were considered, and a broad and diverse phenolic profile could be highlighted. The phenolic profile included flavonoids (anthocyanins, flavones, flavanols, and flavonols), phenolic acids (both hydroxycinnamics and hydroxybenzoics), low molecular weight phenolics (tyrosol equivalents), lignans and stilbenes. Overall, GA and HA treatments significantly modulated the biosynthesis of flavanols, lignans, low molecular weight phenolics, phenolic acids, and stilbene. Thereafter, antioxidant capacity was evaluated in vitro with 2,2-diphenyln-1-picrylhydrazyl (DPPH), 2,2'-Azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS), ferric reducing antioxidant power (FRAP), and cupric ion reducing antioxidant capacity (CUPRAC) assays. In addition, this study examined the inhibitory properties of enzymes, including acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), tyrosinase, alpha-amylase, and alpha-glucosidase. Compared to individual treatments, the combination of GA + HA showed stronger antioxidant abilities in free radical scavenging and reducing power assays in root samples. Moreover, this combination positively influenced the inhibitory effects of root samples on AChE and BChE and the tyrosinase inhibitory effect of leaf samples. Concerning Pearson's correlations, antioxidant and enzyme inhibition activities were related to phenolic compounds, and lignans in particular correlated with radical scavenging activities. Overall, the tested elicitors could offer promising insights for enhancing the functional properties of lettuce in agricultural treatments.PMID:37176879 | DOI:10.3390/plants12091822

Transcriptomic Analysis on the Peel of UV-B-Exposed Peach Fruit Reveals an Upregulation of Phenolic- and UVR8-Related Pathways

Sat, 13/05/2023 - 12:00
Plants (Basel). 2023 Apr 28;12(9):1818. doi: 10.3390/plants12091818.ABSTRACTUV-B treatment deeply influences plant physiology and biochemistry, especially by activating the expression of responsive genes involved in UV-B acclimation through a UV-B-specific perception mechanism. Although the UV-B-related molecular responses have been widely studied in Arabidopsis, relatively few research reports deepen the knowledge on the influence of post-harvest UV-B treatment on fruit. In this work, a transcriptomic approach is adopted to investigate the transcriptional modifications occurring in the peel of UV-B-treated peach (Prunus persica L., cv Fairtime) fruit after harvest. Our analysis reveals a higher gene regulation after 1 h from the irradiation (88% of the differentially expressed genes-DEGs), compared to 3 h recovery. The overexpression of genes encoding phenylalanine ammonia-lyase (PAL), chalcone syntase (CHS), chalcone isomerase (CHI), and flavonol synthase (FLS) revealed a strong activation of the phenylpropanoid pathway, resulting in the later increase in the concentration of specific flavonoid classes, e.g., anthocyanins, flavones, dihydroflavonols, and flavanones, 36 h after the treatment. Upregulation of UVR8-related genes (HY5, COP1, and RUP) suggests that UV-B-triggered activation of the UVR8 pathway occurs also in post-harvest peach fruit. In addition, a regulation of genes involved in the cell-wall dismantling process (PME) is observed. In conclusion, post-harvest UV-B exposure deeply affects the transcriptome of the peach peel, promoting the activation of genes implicated in the biosynthesis of phenolics, likely via UVR8. Thus, our results might pave the way to a possible use of post-harvest UV-B treatments to enhance the content of health-promoting compounds in peach fruits and extending the knowledge of the UVR8 gene network.PMID:37176875 | DOI:10.3390/plants12091818

A Scoping Review of Genus <em>Viscum</em>: Biological and Chemical Aspects of Alcoholic Extracts

Sat, 13/05/2023 - 12:00
Plants (Basel). 2023 Apr 28;12(9):1811. doi: 10.3390/plants12091811.ABSTRACTThe genus Viscum comprises a large number of semi-parasitic shrubs popularly known as Mistletoe. The Viscum species grow in many countries of Europe, Africa and Asia with different popular uses in ornamentation, foods and medicine. Many studies about Viscum have been done over the last years focusing on biological activities and chemical composition of the aqueous extracts, mainly related to anthroposophical medicines. However, it is known that non-aqueous preparations, as alcoholic extracts, have demonstrated different biological activities that are species-and host tree-dependent. Considering the potential of these alcoholic extracts, a scoping review was conducted using data from three online databases: PubMed, Scopus and Embase. Inclusion criteria consisted of the in vitro, in vivo, ex vivo, clinical and chemical studies of alcoholic extracts from Viscum species. The present review summarized 124 original publications about fourteen Viscum species. Viscum album, Viscum articulatum and Viscum coloratum were the main studied species. Alcoholic extracts demonstrated hypotensive, anticancer, antimicrobial, analgesic and anti-inflammatory capabilities, among other biological activities. Flavonoids, phenolic acids and terpenoids represented 48%, 24% and 11% of the total identified compounds, respectively. This review contributes to the knowledge of alcoholic preparations of the Viscum species and points out the lack of clinical studies concerning these different extracts.PMID:37176869 | DOI:10.3390/plants12091811

Phenological and Environmental Factors' Impact on Secondary Metabolites in Medicinal Plant <em>Cotinus coggygria</em> Scop

Sat, 13/05/2023 - 12:00
Plants (Basel). 2023 Apr 25;12(9):1762. doi: 10.3390/plants12091762.ABSTRACTCotinus coggygria Scop. (smoketree) is a phytotherapeutically valuable shrub growing in specific areas in many Eurasian countries. Exploring the intrinsic and extrinsic (abiotic) factors that modulate its secondary metabolism has fundamental and applicative importance. Three smoketree plants from the same population were studied for a period of 4.5 months. Their extracts were characterized using LC-MS/MS, HPLC-UV-VIS-DAD and colorimetric assays to determine the chemical composition and antioxidant potential. Multivariate analysis was applied to correlate the metabolomic data with registered habitat variables and phenological stages. The identified and quantified compounds belonged to the flavonoids (myricetin-3-O-galactoside, myricitrin) and hydrolysable tannins groups (pentagalloyl glucose, methyl gallate, methyl digallate I). Phenolic compounds and tannins were synthesized abundantly in the flowering and fruit stages, whereas flavonoids and triterpenes accumulated during senescence. The antioxidant activities varied between detection methods, samplings and individuals and were only punctually correlated with the compound contents in certain phenological stages. Based on the HCAbp analysis, the samples clustered under four groups, according to their metabolic profile. The CCA analysis revealed that during the reproductive stages (flower, fruit or seed), the secondary metabolism of the plants' leaves is sensitive to the action of abiotic factors, while in senescence, the metabolic content is according to the phenological phase. This study provides a first attempt at understanding the interplay between the habitat and the metabolome of smoketree.PMID:37176820 | DOI:10.3390/plants12091762

Blood Metabolite Profiling of Antarctic Expedition Members: An <sup>1</sup>H NMR Spectroscopy-Based Study

Sat, 13/05/2023 - 12:00
Int J Mol Sci. 2023 May 8;24(9):8459. doi: 10.3390/ijms24098459.ABSTRACTSerum samples from eight participants during the XV winter-over at Concordia base (Antarctic expedition) collected at defined time points, including predeparture, constituted the key substrates for a specific metabolomics study. To ascertain acute changes and chronic adaptation to hypoxia, the metabolic profiles of the serum samples were analyzed using NMR spectroscopy, with principal components analysis (PCA) followed by partial least squares and orthogonal partial least squares discriminant analyses (PLS-DA and OPLS-DA) used as supervised classification methods. Multivariate data analyses clearly highlighted an adaptation period characterized by an increase in the levels of circulating glutamine and lipids, mobilized to supply the body energy needs. At the same time, a reduction in the circulating levels of glutamate and N-acetyl glycoproteins, stress condition indicators, and proinflammatory markers were also found in the NMR data investigation. Subsequent pathway analysis showed possible perturbations in metabolic processes, potentially related to the physiological adaptation, predominantly found by comparing the baseline (at sea level, before mission onset), the base arrival, and the mission ending collected values.PMID:37176166 | DOI:10.3390/ijms24098459

Comprehensive Transcriptomic and Metabolic Profiling of <em>Agrobacterium</em>-<em>tumefaciens</em>-Infected Immature Wheat Embryos

Sat, 13/05/2023 - 12:00
Int J Mol Sci. 2023 May 8;24(9):8449. doi: 10.3390/ijms24098449.ABSTRACTThe transformation efficiency (TE) was improved by a series of special chemical and physical methods using immature embryos from the cultivar Fielder, with the PureWheat technique. To analyze the reaction of immature embryos infected, which seemed to provide the necessary by Agrobacterium tumefaciens in PureWheat, a combination of scanning electron microscopy (SEM), complete transcriptome analysis, and metabolome analysis was conducted to understand the progress. The results of the SEM analysis revealed that Agrobacterium tumefaciens were deposited under the damaged cortex of immature embryos as a result of pretreatment and contacted the receptor cells to improve the TE. Transcriptome analysis indicated that the differentially expressed genes were mainly enriched in phenylpropanoid biosynthesis, starch and sucrose metabolism, plant-pathogen interaction, plant hormone signal transduction, and the MAPK (Mitogen-activated protein kinase) signaling pathway. By analyzing the correlation between differentially expressed genes and metabolites, the expression of many genes and the accumulation of metabolites were changed in glucose metabolism and the TCA cycle (Citrate cycle), as well as the amino acid metabolism; this suggests that the infection of wheat embryos with Agrobacterium is an energy-demanding process. The shikimate pathway may act as a hub between glucose metabolism and phenylpropanoid metabolism during Agrobacterium infection. The downregulation of the F5H gene and upregulation of the CCR gene led to the accumulation of lignin precursors through phenylpropanoid metabolism. In addition, several metabolic pathways and oxidases were found to be involved in the infection treatment, including melatonin biosynthesis, benzoxazinoid biosynthesis, betaine biosynthesis, superoxide dismutase, and peroxidase, suggesting that wheat embryos may be under the stress of Agrobacterium and, thus, undergo an oxidative stress response. These findings explore the physiological and molecular changes of immature embryos during the co-culture stage of the PureWheat technique and provide insights for Agrobacterium-mediated transgenic wheat experiments.PMID:37176157 | DOI:10.3390/ijms24098449

Polar Metabolites Profiling of Wheat Shoots (<em>Triticum aestivum</em> L.) under Repeated Short-Term Soil Drought and Rewatering

Sat, 13/05/2023 - 12:00
Int J Mol Sci. 2023 May 8;24(9):8429. doi: 10.3390/ijms24098429.ABSTRACTThe response of wheat (Triticum aestivum L.) plants to the soil drought at the metabolome level is still not fully explained. In addition, research focuses mainly on single periods of drought, and there is still a lack of data on the response of plants to short-term cyclical periods of drought. The key to this research was to find out whether wheat shoots are able to resume metabolism after the stress subsides and if the reaction to subsequent stress is the same. Gas chromatography coupled with mass spectrometry (GC-MS) is one of the most valuable and fast methods to discover changes in the primary metabolism of plants. The targeted GC-MS analyses of whole shoots of wheat plants exposed (at the juvenile stage of development) to short-term (five days) mild soil drought/rewatering cycles (until the start of shoot wilting) enabled us to identify 32 polar metabolites. The obtained results revealed an accumulation of sugars (sucrose, fructose, glucose, and 1-kestose), proline, and malic acid. During five days of recovery, shoots regained full turgor and continued to grow, and the levels of accumulated metabolites decreased. Similar changes in metabolic profiles were found during the second drought/rewatering cycle. However, the concentrations of glucose, proline, and malic acid were higher after the second drought than after the first one. Additionally, the concentration of total polar metabolites after each plant rewatering was elevated compared to control samples. Although our results confirm the participation of proline in wheat responses to drought, they also highlight the responsiveness of soluble carbohydrate metabolism to stress/recovery.PMID:37176136 | DOI:10.3390/ijms24098429

Special Issue "Role of Redox Homeostasis and Oxidative Stress in Human Health"

Sat, 13/05/2023 - 12:00
Int J Mol Sci. 2023 May 6;24(9):8352. doi: 10.3390/ijms24098352.ABSTRACTRedox homeostasis plays essential roles in the regulation of the physiological process [...].PMID:37176059 | DOI:10.3390/ijms24098352

Potential Role of EPSPS Mutations in the Resistance of <em>Eleusine indica</em> to Glyphosate

Sat, 13/05/2023 - 12:00
Int J Mol Sci. 2023 May 4;24(9):8250. doi: 10.3390/ijms24098250.ABSTRACTGene mutation is a basic evolutionary mechanism in plants under selection pressure of herbicides. Such mutation has pleiotropic effects on plant growth. We systemically investigated the effects of Pro106Leu (P106L), Pro106Ser (P106S), and Thr102Ile + Pro106Ser (TIPS) mutations on EPSPS functionality and fitness traits in Eleusine indica at the biochemical and physiological levels. The affinity of natural EPSPS for glyphosate was 53.8 times higher than that for phosphoenolpyruvate (PEP), as revealed by the dissociation constant; the constant decreased in both the P106L (39.9-fold) and P106S (46.9-fold) mutants but increased in the TIPS (87.5-fold) mutant. The Km (PEP) values of the P106L, P106S, and TIPS mutants were 2.4-, 0.7-, and 4.1-fold higher than that of natural EPSPS, corresponding to resistance levels of 2.5, 1.9, and 11.4, respectively. The catalytic efficiency values (maximum reaction rates) were 0.89-, 0.94-, and 0.26-fold higher than that of natural EPSPS. The levels of metabolites related to amino acids and nucleotides were significantly reduced in the mutated plants. The fitness costs were substantial for the biomass, total leaf area, seed number, and seedling emergence throughout the growth period in the plants with P106L and TIPS mutations. These results provide insights into EPSPS kinetics and their effect on plant growth.PMID:37175957 | DOI:10.3390/ijms24098250

Comparative Transcriptome and Widely Targeted Metabolome Analysis Reveals the Molecular Mechanism of Powdery Mildew Resistance in Tomato

Sat, 13/05/2023 - 12:00
Int J Mol Sci. 2023 May 4;24(9):8236. doi: 10.3390/ijms24098236.ABSTRACTPowdery mildew is a serious problem in tomato production; therefore, the PM-resistant tomato inbred line, '63187', and the susceptible tomato variety, 'Moneymaker (MM)', were used as experimental materials for the combined analysis of transcriptome and widely targeted metabolome on tomato leaves at 0 h post inoculation (hpi), 12 hpi, and 48 hpi. The results indicated that 276 genes were expressed in all treatments, and the K-means cluster analysis showed that these genes were divided into eight classes in '63187' and ten classes in 'MM'. KEGG enrichment showed that amino acid metabolism, signal transduction, energy metabolism, and other secondary metabolites biosynthesis pathways were significantly enriched. Interestingly, the analysis of WRKY family transcription factors (TFs) showed that the expression of four TFs in '63187' increased with no obvious change in 'MM'; and the expression of one TF in 'MM' increased with no obvious change in '63187'. The combined analysis revealed that both phenylpropanoid biosynthesis and flavonoid biosynthesis pathways were enriched in '63187' and 'MM'. In '63187', six metabolites involved in this pathway were downregulated, and four genes were highly expressed, while in 'MM', three metabolites were upregulated, four metabolites were downregulated, and ten genes were highly expressed. These metabolites and genes might be candidates for PM resistance or susceptibility in subsequent studies. These results provide favorable molecular information for the study of the different resistances of tomatoes to PM, and they provide a basis for the breeding of tomato varieties resistant to PM.PMID:37175940 | DOI:10.3390/ijms24098236

A Metabolomics and Big Data Approach to Cannabis Authenticity (Authentomics)

Sat, 13/05/2023 - 12:00
Int J Mol Sci. 2023 May 3;24(9):8202. doi: 10.3390/ijms24098202.ABSTRACTWith the increasing accessibility of cannabis (Cannabis sativa L., also known as marijuana and hemp), its products are being developed as extracts for both recreational and therapeutic use. This has led to increased scrutiny by regulatory bodies, who aim to understand and regulate the complex chemistry of these products to ensure their safety and efficacy. Regulators use targeted analyses to track the concentration of key bioactive metabolites and potentially harmful contaminants, such as metals and other impurities. However, the metabolic complexity of cannabis metabolic pathways requires a more comprehensive approach. A non-targeted metabolomic analysis of cannabis products is necessary to generate data that can be used to determine their authenticity and efficacy. An authentomics approach, which involves combining the non-targeted analysis of new samples with big data comparisons to authenticated historic datasets, provides a robust method for verifying the quality of cannabis products. To meet International Organization for Standardization (ISO) standards, it is necessary to implement the authentomics platform technology and build an integrated database of cannabis analytical results. This study is the first to review the topic of the authentomics of cannabis and its potential to meet ISO standards.PMID:37175910 | DOI:10.3390/ijms24098202

Combined Transcriptome and Metabolome Analysis of Smooth Muscle of Myostatin Knockout Cattle

Sat, 13/05/2023 - 12:00
Int J Mol Sci. 2023 May 1;24(9):8120. doi: 10.3390/ijms24098120.ABSTRACTMyostatin (MSTN), a growth and differentiation factor, plays an important role in regulating skeletal muscle growth and development. MSTN knockout (MSTN-KO) leads to skeletal muscle hypertrophy and regulates metabolic homeostasis. Moreover, MSTN is also detected in smooth muscle. However, the effect of MSTN-KO on smooth muscle has not yet been reported. In this study, combined metabolome and transcriptome analyses were performed to investigate the metabolic and transcriptional profiling in esophageal smooth muscles of MSTN-KO Chinese Luxi Yellow cattle (n = 5, 24 months, average body weight 608.5 ± 17.62 kg) and wild-type (WT) Chinese Luxi Yellow cattle (n = 5, 24 months, average body weight 528.25 ± 11.03 kg). The transcriptome was sequenced using the Illumina Novaseq™ 6000 sequence platform. In total, 337 significantly up- and 129 significantly down-regulated genes were detected in the MSTN-KO cattle compared with the WT Chinese Luxi Yellow cattle. Functional enrichment analysis indicated that the DEGs were mainly enriched in 67 signaling pathways, including cell adhesion molecules, tight junction, and the cGMP-PKG signaling pathway. Metabolomics analysis by liquid chromatography-tandem mass spectrometry (LC-MS/MS) identified 130 differential metabolites between the groups, with 56 up-regulated and 74 down-regulated in MSTN knockout cattle compared with WT cattle. Differential metabolites were significantly enriched in 31 pathways, including glycerophospholipid metabolism, histidine metabolism, glutathione metabolism, and purine metabolism. Transcriptome and metabolome were combined to analyze the significant enrichment pathways, and there were three metabolically related pathways, including histidine metabolism, purine metabolism, and arginine and proline metabolism. These results provide important references for in-depth research on the effect of MSTN knockout on smooth muscle.PMID:37175828 | DOI:10.3390/ijms24098120

Ectopic Expression of <em>FvVND4c</em> Promotes Secondary Cell Wall Thickening and Flavonoid Accumulation in <em>Fragaria vesca</em>

Sat, 13/05/2023 - 12:00
Int J Mol Sci. 2023 Apr 30;24(9):8110. doi: 10.3390/ijms24098110.ABSTRACTSecondary cell wall (SCW) thickening has a significant effect on the growth and development of plants, as well as in the resistance to various biotic and abiotic stresses. Lignin accounts for the strength of SCW. It is synthesized through the phenylpropanoid pathway that also leads to flavonoid synthesis. The coupling strategies for lignin and flavonoid syntheses are diverse in plants. How their syntheses are balanced by transcriptional regulation in fleshy fruits is still unclear. The diploid strawberry (Fragaria vesca) is a model for fleshy fruits research due to its small genome and wide scope of genetic transformation. SCW thickening is regulated by a multilevel transcriptional regulatory network wherein vascular-related NAC domains (VNDs) act as key regulators. In this study, we systematically characterized VNDs in Fragaria vesca and explored their functions. The overexpression of FvVND4c in diploid strawberry fruits resulted in SCW thickening and fruit color changes accompanied with the accumulation of lignin and flavonoids. Genes related to these phenotypes were also induced upon FvVND4c overexpression. Among the induced genes, we found FvMYB46 to be a direct downstream regulator of FvVND4c. The overexpression of FvMYB46 resulted in similar phenotypes as FvVND4c, except for the color change. Transcriptomic analyses suggest that both FvVND4c and FvMYB46 act on phenylpropanoid and flavonoid biosynthesis pathways, and induce lignin synthesis for SCW. These results suggest that FvVND4c and FvMYB46 cooperatively regulate SCW thickening and flavonoid accumulation in Fragaria vesca.PMID:37175817 | DOI:10.3390/ijms24098110

Combined Transcriptome and Metabolome Analysis Reveals Adaptive Defense Responses to DON Induction in Potato

Sat, 13/05/2023 - 12:00
Int J Mol Sci. 2023 Apr 29;24(9):8054. doi: 10.3390/ijms24098054.ABSTRACTPhytophthora infestans poses a serious threat to potato production, storage, and processing. Understanding plant immunity triggered by fungal elicitors is important for the effective control of plant diseases. However, the role of the potato stress response to Fusarium toxin deoxynivalenol (DON)-induced stress is still not fully understood. In this study, the metabolites of DON-treated potato tubers were studied for four time intervals using UPLC-MS/MS. We identified 676 metabolites, and differential accumulation metabolite analysis showed that alkaloids, phenolic acids, and flavonoids were the major differential metabolites that directly determined defense response. Transcriptome data showed that differentially expressed genes (DEGs) were significantly enriched in phenylpropane and flavonoid metabolic pathways. Weighted gene co-expression network analysis (WGCNA) identified many hub genes, some of which modulate plant immune responses. This study is important for understanding the metabolic changes, transcriptional regulation, and physiological responses of active and signaling substances during DON induction, and it will help to design defense strategies against Phytophthora infestans in potato.PMID:37175760 | DOI:10.3390/ijms24098054

Multi-Omics Research Strategies for Psoriasis and Atopic Dermatitis

Sat, 13/05/2023 - 12:00
Int J Mol Sci. 2023 Apr 28;24(9):8018. doi: 10.3390/ijms24098018.ABSTRACTPsoriasis and atopic dermatitis (AD) are multifactorial and heterogeneous inflammatory skin diseases, while years of research have yielded no cure, and the costs associated with caring for people suffering from psoriasis and AD are a huge burden on society. Integrating several omics datasets will enable coordinate-based simultaneous analysis of hundreds of genes, RNAs, chromatins, proteins, and metabolites in particular cells, revealing networks of links between various molecular levels. In this review, we discuss the latest developments in the fields of genomes, transcriptomics, proteomics, and metabolomics and discuss how they were used to identify biomarkers and understand the main pathogenic mechanisms underlying these diseases. Finally, we outline strategies for achieving multi-omics integration and how integrative omics and systems biology can advance our knowledge of, and ability to treat, psoriasis and AD.PMID:37175722 | DOI:10.3390/ijms24098018

Integrative Analysis of Metabolomic and Transcriptomic Data Reveals the Mechanism of Color Formation in Corms of <em>Pinellia ternata</em>

Sat, 13/05/2023 - 12:00
Int J Mol Sci. 2023 Apr 28;24(9):7990. doi: 10.3390/ijms24097990.ABSTRACTPinellia ternata (Thunb.) Breit. (P. ternata) is a very important plant that is commonly used in traditional Chinese medicine. Its corms can be used as medicine and function to alleviate cough, headache, and phlegm. The epidermis of P. ternata corms is often light yellow to yellow in color; however, within the range of P. ternata found in JingZhou City in Hubei Province, China, there is a form of P. ternata in which the epidermis of the corm is red. We found that the total flavonoid content of red P. ternata corms is significantly higher than that of yellow P. ternata corms. The objective of this study was to understand the molecular mechanisms behind the difference in epidermal color between the two forms of P. ternata. The results showed that a high content of anthocyanidin was responsible for the red epidermal color in P. ternata, and 15 metabolites, including cyanidin-3-O-rutinoside-5-O-glucoside, cyanidin-3-O-glucoside, and cyanidin-3-O-rutinoside, were screened as potential color markers in P. ternata through metabolomic analysis. Based on an analysis of the transcriptome, seven genes, including PtCHS1, PtCHS2, PtCHI1, PtDFR5, PtANS, PtUPD-GT2, and PtUPD-GT3, were found to have important effects on the biosynthesis of anthocyanins in the P. ternata corm epidermis. Furthermore, two transcription factors (TFs), bHLH1 and bHLH2, may have regulatory functions in the biosynthesis of anthocyanins in red P. ternata corms. Using an integrative analysis of the metabolomic and transcriptomic data, we identified five genes, PtCHI, PtDFR2, PtUPD-GT1, PtUPD-GT2, and PtUPD-GT3, that may play important roles in the presence of the red epidermis color in P. ternata corms.PMID:37175702 | DOI:10.3390/ijms24097990

Combined Metabolome and Transcriptome Analysis Highlights the Host's Influence on <em>Cistanche deserticola</em> Metabolite Accumulation

Sat, 13/05/2023 - 12:00
Int J Mol Sci. 2023 Apr 27;24(9):7968. doi: 10.3390/ijms24097968.ABSTRACTThe medicinal plant Cistanche deserticola Ma (Orobanchaceae) is a holoparasitic angiosperm that takes life-essential materials from Haloxylon ammodendron (C. A. Mey.) Bunge (Amaranthaceae) roots. Although many experiments have been conducted to improve the quality of C. deserticola, little attention has been paid to the host's influence on metabolite accumulation. In this study, transcriptomic and metabolomic analyses were performed to unveil the host's role in C. deserticola's metabolite accumulation, especially of phenylethanoid glycosides (PhGs). The results indicate that parasitism by C. deserticola causes significant changes in H. ammodendron roots in relation to metabolites and genes linked to phenylalanine metabolism, tryptophan metabolism and phenylpropanoid biosynthesis pathways, which provide precursors for PhGs. Correlation analysis of genes and metabolites further confirms that C. deserticola's parasitism affects PhG biosynthesis in H. ammodendron roots. Then we found specific upregulation of glycosyltransferases in haustoria which connect the parasites and hosts. It was shown that C. deserticola absorbs PhG precursors from the host and that glycosylation takes place in the haustorium. We mainly discuss how the host resists C. deserticola parasitism and how this medicinal parasite exploits its unfavorable position and takes advantage of host-derived metabolites. Our study highlights that the status of the host plant affects not only the production but also the quality of Cistanches Herba, which provides a practical direction for medicinal plant cultivation.PMID:37175675 | DOI:10.3390/ijms24097968

Analysis of Volatile Aroma Components and Regulatory Genes in Different Kinds and Development Stages of Pepper Fruits Based on Non-Targeted Metabolome Combined with Transcriptome

Sat, 13/05/2023 - 12:00
Int J Mol Sci. 2023 Apr 26;24(9):7901. doi: 10.3390/ijms24097901.ABSTRACTAroma is a crucial attribute affecting the quality of pepper and its processed products, which has significant commercial value. However, little is known about the composition of volatile aroma compounds (VACs) in pepper fruits and their potential molecular regulatory mechanisms. In this study, HS-SPME-GC-MS combined with transcriptome sequencing is used to analyze the composition and formation mechanism of VACs in different kinds and development stages of pepper fruits. The results showed that 149 VACs, such as esters, alcohols, aldehydes, and terpenoids, were identified from 4 varieties and 3 development stages, and there were significant quantitative differences among different samples. Volatile esters were the most important aroma components in pepper fruits. PCA analysis showed that pepper fruits of different developmental stages had significantly different marker aroma compounds, which may be an important provider of pepper's characteristic aroma. Transcriptome analysis showed that many differential genes (DEGs) were enriched in the metabolic pathways related to the synthesis of VACs, such as fatty acids, amino acids, MVA, and MEP in pepper fruits. In addition, we identified a large number of differential transcription factors (TFs) that may regulate the synthesis of VACs. Combined analysis of differential aroma metabolites and DEGs identified two co-expression network modules highly correlated with the relative content of VACs in pepper fruit. This study confirmed the basic information on the changes of VACs in the fruits of several Chinese spicy peppers at different stages of development, screened out the characteristic aroma components of different varieties, and revealed the molecular mechanism of aroma formation, providing a valuable reference for the quality breeding of pepper.PMID:37175606 | DOI:10.3390/ijms24097901

Pages