Integrative Molecular Phenotyping
INTEGRATIVE MOLECULAR
PHENOTYPING
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY

PubMed

Diet Restriction Impact on High-Fat-Diet-Induced Obesity by Regulating Mitochondrial Cardiolipin Biosynthesis and Remodeling

Sat, 10/06/2023 - 12:00
Molecules. 2023 Jun 2;28(11):4522. doi: 10.3390/molecules28114522.ABSTRACTDiet restriction (DR) ameliorates obesity by regulating mitochondrial function. Cardiolipin (CL), a mitochondrial phospholipid, is closely associated with mitochondrial function. This study aimed to evaluate the anti-obesity effects of graded levels of DR based on mitochondrial CL levels in the liver. Obese mice were treated with 0%, 20%, 40%, and 60% reductions in the normal diet compared to normal animals (0 DR, 20 DR, 40 DR, and 60 DR groups, respectively). Biochemical and histopathological analyses were performed to evaluate the ameliorative effects of DR on obese mice. The altered profile of mitochondrial CL in the liver was explored using a targeted metabolomics strategy by ultra-high-pressure liquid chromatography MS/MS coupled with quadrupole time-of-flight mass spectrometry. Finally, gene expression associated with CL biosynthesis and remodeling was quantified. Tissue histopathology and biochemical index evaluations revealed significant improvements in the liver after DR, except for the 60 DR group. The variation in mitochondrial CL distribution and DR levels showed an inverted U-shape, and the CL content in the 40 DR group was the most upregulated. This result is consistent with the results of the target metabolomic analysis, which showed that 40 DR presented more variation. Furthermore, DR led to increased gene expression associated with CL biosynthesis and remodeling. This study provides new insights into the mitochondrial mechanisms underlying DR intervention in obesity.PMID:37298998 | DOI:10.3390/molecules28114522

Untargeted Metabolomics Analysis for Studying Differences in High-Quality Colombian Cocoa Beans

Sat, 10/06/2023 - 12:00
Molecules. 2023 May 31;28(11):4467. doi: 10.3390/molecules28114467.ABSTRACTColombia is a producer of fine cocoa, according to the International Cocoa Organization; however, most of its exports are in the ordinary cocoa category. To remedy this situation, several national organizations are working to create technological platforms for small producers to certify the quality of their beans. The objective of this study was to identify differential chemical markers in 36 cocoa bean samples from five Colombian departments and associate them with cocoa quality properties. For this purpose, a non-targeted metabolomics approach was performed using UHPLC-HRMS, along with sensory and physicochemical analyses. The 36 samples did not differ in sensory quality, polyphenol content, and theobromine/caffeine ratio. However, the multivariate statistical analysis allowed us to differentiate the samples into four clusters. In addition, a similar grouping of the samples was also observed in the physical analyses. The metabolites responsible for such clustering were investigated with univariate statistical analysis and presumptively identified by comparison of experimental mass spectra with those reported in databases. Alkaloids, flavonoids, terpenoids, peptides, quinolines, and sulfur compounds were identified as discriminants between sample groups. Here, it was presented the metabolic profiles as an important chemical feature for further studies in quality control and more specific characterization of fine cocoa.PMID:37298942 | DOI:10.3390/molecules28114467

A Targeted Mass Spectrometry Approach to Identify Peripheral Changes in Metabolic Pathways of Patients with Alzheimer's Disease

Sat, 10/06/2023 - 12:00
Int J Mol Sci. 2023 Jun 4;24(11):9736. doi: 10.3390/ijms24119736.ABSTRACTAlzheimer's disease (AD), a neurodegenerative disorder, is the most common cause of dementia in the elderly population. Since its original description, there has been intense debate regarding the factors that trigger its pathology. It is becoming apparent that AD is more than a brain disease and harms the whole-body metabolism. We analyzed 630 polar and apolar metabolites in the blood of 20 patients with AD and 20 healthy individuals, to determine whether the composition of plasma metabolites could offer additional indicators to evaluate any alterations in the metabolic pathways related to the illness. Multivariate statistical analysis showed that there were at least 25 significantly dysregulated metabolites in patients with AD compared with the controls. Two membrane lipid components, glycerophospholipids and ceramide, were upregulated, whereas glutamic acid, other phospholipids, and sphingolipids were downregulated. The data were analyzed using metabolite set enrichment analysis and pathway analysis using the KEGG library. The results showed that at least five pathways involved in the metabolism of polar compounds were dysregulated in patients with AD. Conversely, the lipid pathways did not show significant alterations. These results support the possibility of using metabolome analysis to understand alterations in the metabolic pathways related to AD pathophysiology.PMID:37298687 | DOI:10.3390/ijms24119736

The Combination of a Human Biomimetic Liver Microphysiology System with BIOLOGXsym, a Quantitative Systems Toxicology (QST) Modeling Platform for Macromolecules, Provides Mechanistic Understanding of Tocilizumab- and GGF2-Induced Liver Injury

Sat, 10/06/2023 - 12:00
Int J Mol Sci. 2023 Jun 2;24(11):9692. doi: 10.3390/ijms24119692.ABSTRACTBiologics address a range of unmet clinical needs, but the occurrence of biologics-induced liver injury remains a major challenge. Development of cimaglermin alfa (GGF2) was terminated due to transient elevations in serum aminotransferases and total bilirubin. Tocilizumab has been reported to induce transient aminotransferase elevations, requiring frequent monitoring. To evaluate the clinical risk of biologics-induced liver injury, a novel quantitative systems toxicology modeling platform, BIOLOGXsym™, representing relevant liver biochemistry and the mechanistic effects of biologics on liver pathophysiology, was developed in conjunction with clinically relevant data from a human biomimetic liver microphysiology system. Phenotypic and mechanistic toxicity data and metabolomics analysis from the Liver Acinus Microphysiology System showed that tocilizumab and GGF2 increased high mobility group box 1, indicating hepatic injury and stress. Tocilizumab exposure was associated with increased oxidative stress and extracellular/tissue remodeling, and GGF2 decreased bile acid secretion. BIOLOGXsym simulations, leveraging the in vivo exposure predicted by physiologically-based pharmacokinetic modeling and mechanistic toxicity data from the Liver Acinus Microphysiology System, reproduced the clinically observed liver signals of tocilizumab and GGF2, demonstrating that mechanistic toxicity data from microphysiology systems can be successfully integrated into a quantitative systems toxicology model to identify liabilities of biologics-induced liver injury and provide mechanistic insights into observed liver safety signals.PMID:37298645 | DOI:10.3390/ijms24119692

Untargeted Metabolomics Identifies Biomarkers for MCADD Neonates in Dried Blood Spots

Sat, 10/06/2023 - 12:00
Int J Mol Sci. 2023 Jun 2;24(11):9657. doi: 10.3390/ijms24119657.ABSTRACTMedium-chain acyl-CoA dehydrogenase deficiency (MCADD) is the most common inherited mitochondrial metabolic disease of fatty acid β-oxidation, especially in newborns. MCADD is clinically diagnosed using Newborn Bloodspot Screening (NBS) and genetic testing. Still, these methods have limitations, such as false negatives or positives in NBS and the variants of uncertain significance in genetic testing. Thus, complementary diagnostic approaches for MCADD are needed. Recently, untargeted metabolomics has been proposed as a diagnostic approach for inherited metabolic diseases (IMDs) due to its ability to detect a wide range of metabolic alterations. We performed an untargeted metabolic profiling of dried blood spots (DBS) from MCADD newborns (n = 14) and healthy controls (n = 14) to discover potential metabolic biomarkers/pathways associated with MCADD. Extracted metabolites from DBS samples were analyzed using UPLC-QToF-MS for untargeted metabolomics analyses. Multivariate and univariate analyses were used to analyze the metabolomics data, and pathway and biomarker analyses were also performed on the significantly identified endogenous metabolites. The MCADD newborns had 1034 significantly dysregulated metabolites compared to healthy newborns (moderated t-test, no correction, p-value ≤ 0.05, FC 1.5). A total of 23 endogenous metabolites were up-regulated, while 84 endogenous metabolites were down-regulated. Pathway analyses showed phenylalanine, tyrosine, and tryptophan biosynthesis as the most affected pathways. Potential metabolic biomarkers for MCADD were PGP (a21:0/PG/F1alpha) and glutathione, with an area under the curve (AUC) of 0.949 and 0.898, respectively. PGP (a21:0/PG/F1alpha) was the first oxidized lipid in the top 15 biomarker list affected by MCADD. Additionally, glutathione was chosen to indicate oxidative stress events that could happen during fatty acid oxidation defects. Our findings suggest that MCADD newborns may have oxidative stress events as signs of the disease. However, further validations of these biomarkers are needed in future studies to ensure their accuracy and reliability as complementary markers with established MCADD markers for clinical diagnosis.PMID:37298607 | DOI:10.3390/ijms24119657

Magnesium Nutrient Application Induces Metabolomics and Physiological Responses in Mulberry (<em>Morus alba</em>) Plants

Sat, 10/06/2023 - 12:00
Int J Mol Sci. 2023 Jun 2;24(11):9650. doi: 10.3390/ijms24119650.ABSTRACTMulberry (Morus alba) is a significant plant with numerous economic benefits; however, its growth and development are affected by nutrient levels. A high level of magnesium (Mg) or magnesium nutrient starvation are two of the significant Mg factors affecting plant growth and development. Nevertheless, M. alba's metabolic response to different Mg concentrations is unclear. In this study, different Mg concentrations, optimal (3 mmol/L), high (6 mmol/L and 9 mmol/L), or low (1 and 2 mmol/L) and deficient (0 mmol/L), were applied to M. alba for three weeks to evaluate their effects via physiological and metabolomics (untargeted; liquid chromatography-mass spectrometry (LC-MS)) studies. Several measured physiological traits revealed that Mg deficiency and excess Mg altered net photosynthesis, chlorophyll content, leaf Mg content and fresh weight, leading to remarkable reductions in the photosynthetic efficiency and biomass of mulberry plants. Our study reveals that an adequate supply of the nutrient Mg promoted the mulberry's physiological response parameters (net photosynthesis, chlorophyll content, leaf and root Mg content and biomass). The metabolomics data show that different Mg concentrations affect several differential metabolite expressions (DEMs), particularly fatty acyls, flavonoids, amino acids, organic acid, organooxygen compounds, prenol lipids, coumarins, steroids and steroid derivatives, cinnamic acids and derivatives. An excessive supply of Mg produced more DEMs, but negatively affected biomass production compared to low and optimum supplies of Mg. The significant DEMs correlated positively with mulberry's net photosynthesis, chlorophyll content, leaf Mg content and fresh weight. The mulberry plant's response to the application of Mg used metabolites, mainly amino acids, organic acids, fatty acyls, flavonoids and prenol lipids, in the KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways. These classes of compounds were mainly involved in lipid metabolism, amino acid metabolism, energy metabolism, the biosynthesis of other secondary metabolites, the biosynthesis of other amino acids, the metabolism of cofactors and vitamin pathways, indicating that mulberry plants respond to Mg concentrations by producing a divergent metabolism. The supply of Mg nutrition was an important factor influencing the induction of DEMs, and these metabolites were critical in several metabolic pathways related to magnesium nutrition. This study provides a fundamental understanding of DEMs in M. alba's response to Mg nutrition and the metabolic mechanisms involved, which may be critical to the mulberry genetic breeding program.PMID:37298601 | DOI:10.3390/ijms24119650

Comprehensive Insight into Colorectal Cancer Metabolites and Lipids for Human Serum: A Proof-of-Concept Study

Sat, 10/06/2023 - 12:00
Int J Mol Sci. 2023 Jun 1;24(11):9614. doi: 10.3390/ijms24119614.ABSTRACTColorectal cancer (CRC) ranks as the third most frequently diagnosed cancer and the second leading cause of cancer-related deaths. The current endoscopic-based or stool-based diagnostic techniques are either highly invasive or lack sufficient sensitivity. Thus, there is a need for less invasive and more sensitive screening approaches. We, therefore, conducted a study on 64 human serum samples representing three different groups (adenocarcinoma, adenoma, and control) using cutting-edge GC×GC-LR/HR-TOFMS (comprehensive two-dimensional gas chromatography coupled with low/high-resolution time-of-flight mass spectrometry). We analyzed samples with two different specifically tailored sample preparation approaches for lipidomics (fatty acids) (25 μL serum) and metabolomics (50 μL serum). In-depth chemometric screening with supervised and unsupervised approaches and metabolic pathway analysis were applied to both datasets. A lipidomics study revealed that specific PUFA (ω-3) molecules are inversely associated with increased odds of CRC, while some PUFA (ω-6) analytes show a positive correlation. The metabolomics approach revealed downregulation of amino acids (alanine, glutamate, methionine, threonine, tyrosine, and valine) and myo-inositol in CRC, while 3-hydroxybutyrate levels were increased. This unique study provides comprehensive insight into molecular-level changes associated with CRC and allows for a comparison of the efficiency of two different analytical approaches for CRC screening using same serum samples and single instrumentation.PMID:37298566 | DOI:10.3390/ijms24119614

Proteomic and Metabolomic Changes in Psoriasis Preclinical and Clinical Aspects

Sat, 10/06/2023 - 12:00
Int J Mol Sci. 2023 May 30;24(11):9507. doi: 10.3390/ijms24119507.ABSTRACTSkin diseases such as psoriasis (Ps) and psoriatic arthritis (PsA) are immune-mediated inflammatory diseases. Overlap of autoinflammatory and autoimmune conditions hinders diagnoses and identifying personalized patient treatments due to different psoriasis subtypes and the lack of verified biomarkers. Recently, proteomics and metabolomics have been intensively investigated in a broad range of skin diseases with the main purpose of identifying proteins and small molecules involved in the pathogenesis and development of the disease. This review discusses proteomics and metabolomics strategies and their utility in research and clinical practice in psoriasis and psoriasis arthritis. We summarize the studies, from in vivo models conducted on animals through academic research to clinical trials, and highlight their contribution to the discovery of biomarkers and targets for biological drugs.PMID:37298466 | DOI:10.3390/ijms24119507

Impact of Sea Warming and 17-α-Ethinylestradiol Exposure on the Lipid Metabolism of <em>Ruditapes philippinarum</em> Clams

Sat, 10/06/2023 - 12:00
Int J Mol Sci. 2023 May 30;24(11):9485. doi: 10.3390/ijms24119485.ABSTRACTThis paper reports on an NMR metabolomics study of lipophilic extracts of Ruditapes philippinarum clams exposed to the hormonal contaminant 17-α-ethinylestradiol (EE2), at 17 °C and 21 °C. The results reveal that exposure at 17 °C triggers a weak response at low EE2 concentrations, suggestive of a slight increase in membrane rigidity, followed by lipid metabolic stability at higher EE2 concentrations. On the other hand, at 21 °C, lipid metabolism begins to respond at 125 ng/L EE2, with antioxidant docosahexaenoic acid (DHA) helping to tackle high-oxidative-stress conditions, in tandem with enhanced storage of triglycerides. Exposure to 625 ng/L EE2 (highest concentration) enhances phosphatidylcholine (PtdCho) and polyunsaturated fatty acid (PUFA) levels, their direct intercorrelation suggesting PUFA incorporation in new membrane phospholipids. This should lead to increased membrane fluidity, probably aided by a decrease in cholesterol. PUFA levels, considered a measure of membrane fluidity, were strongly (and positively) correlated to intracellular glycine levels, thus identifying glycine as the main osmolyte entering the cells under high stress. Membrane fluidity also seems to elicit the loss of taurine. This work contributes to the understanding of the mechanisms of response of R. philippinarum clams to EE2 in tandem with warming while unveiling novel potential markers of stress mitigation, namely high levels of PtdCho, PUFAs (or PtdCho/glycerophosphocholine and PtdCho/acetylcholine ratios) and linoleic acid and low PUFA/glycine ratios.PMID:37298436 | DOI:10.3390/ijms24119485

Conjunctive Analyses of BSA-Seq and BSR-Seq to Identify Candidate Genes Controlling the Black Lemma and Pericarp Trait in Barley

Sat, 10/06/2023 - 12:00
Int J Mol Sci. 2023 May 30;24(11):9473. doi: 10.3390/ijms24119473.ABSTRACTBlack barley seeds are a health-beneficial diet resource because of their special chemical composition and antioxidant properties. The black lemma and pericarp (BLP) locus was mapped in a genetic interval of 0.807 Mb on chromosome 1H, but its genetic basis remains unknown. In this study, targeted metabolomics and conjunctive analyses of BSA-seq and BSR-seq were used to identify candidate genes of BLP and the precursors of black pigments. The results revealed that five candidate genes, purple acid phosphatase, 3-ketoacyl-CoA synthase 11, coiled-coil domain-containing protein 167, subtilisin-like protease, and caffeic acid-O-methyltransferase, of the BLP locus were identified in the 10.12 Mb location region on the 1H chromosome after differential expression analysis, and 17 differential metabolites, including the precursor and repeating unit of allomelanin, were accumulated in the late mike stage of black barley. Phenol nitrogen-free precursors such as catechol (protocatechuic aldehyde) or catecholic acids (caffeic, protocatechuic, and gallic acids) may promote black pigmentation. BLP can manipulate the accumulation of benzoic acid derivatives (salicylic acid, 2,4-dihydroxybenzoic acid, gallic acid, gentisic acid, protocatechuic acid, syringic acid, vanillic acid, protocatechuic aldehyde, and syringaldehyde) through the shikimate/chorismite pathway other than the phenylalanine pathway and alter the metabolism of the phenylpropanoid-monolignol branch. Collectively, it is reasonable to infer that black pigmentation in barley is due to allomelanin biosynthesis in the lemma and pericarp, and BLP regulates melanogenesis by manipulating the biosynthesis of its precursors.PMID:37298424 | DOI:10.3390/ijms24119473

Investigating the Urinary Metabolome in the First Year of Life and Its Association with Later Diagnosis of Autism Spectrum Disorder or Non-Typical Neurodevelopment in the MARBLES Study

Sat, 10/06/2023 - 12:00
Int J Mol Sci. 2023 May 29;24(11):9454. doi: 10.3390/ijms24119454.ABSTRACTDevelopmental disabilities are often associated with alterations in metabolism. However, it remains unknown how early these metabolic issues may arise. This study included a subset of children from the Markers of Autism Risks in Babies-Learning Early Signs (MARBLES) prospective cohort study. In this analysis, 109 urine samples collected at 3, 6, and/or 12 months of age from 70 children with a family history of ASD who went on to develop autism spectrum disorder (ASD n = 17), non-typical development (Non-TD n = 11), or typical development (TD n = 42) were investigated by nuclear magnetic resonance (NMR) spectroscopy to measure urinary metabolites. Multivariate principal component analysis and a generalized estimating equation were performed with the objective of exploring the associations between urinary metabolite levels in the first year of life and later adverse neurodevelopment. We found that children who were later diagnosed with ASD tended to have decreased urinary dimethylamine, guanidoacetate, hippurate, and serine, while children who were later diagnosed with Non-TD tended to have elevated urinary ethanolamine and hypoxanthine but lower methionine and homovanillate. Children later diagnosed with ASD or Non-TD both tended to have decreased urinary 3-aminoisobutyrate. Our results suggest subtle alterations in one-carbon metabolism, gut-microbial co-metabolism, and neurotransmitter precursors observed in the first year of life may be associated with later adverse neurodevelopment.PMID:37298406 | DOI:10.3390/ijms24119454

Integrative Analysis Reveals the Diverse Effects of 3D Stiffness upon Stem Cell Fate

Sat, 10/06/2023 - 12:00
Int J Mol Sci. 2023 May 26;24(11):9311. doi: 10.3390/ijms24119311.ABSTRACTThe origin of life and native tissue development are dependent on the heterogeneity of pluripotent stem cells. Bone marrow mesenchymal stem cells (BMMSCs) are located in a complicated niche with variable matrix stiffnesses, resulting in divergent stem cell fates. However, how stiffness drives stem cell fate remains unknown. For this study, we performed whole-gene transcriptomics and precise untargeted metabolomics sequencing to elucidate the complex interaction network of stem cell transcriptional and metabolic signals in extracellular matrices (ECMs) with different stiffnesses, and we propose a potential mechanism involved in stem cell fate decision. In a stiff (39~45 kPa) ECM, biosynthesis of aminoacyl-tRNA was up-regulated, and increased osteogenesis was also observed. In a soft (7~10 kPa) ECM, biosynthesis of unsaturated fatty acids and deposition of glycosaminoglycans were increased, accompanied by enhanced adipogenic/chondrogenic differentiation of BMMSCs. In addition, a panel of genes responding to the stiffness of the ECM were validated in vitro, mapping out the key signaling network that regulates stem cells' fate decisions. This finding of "stiffness-dependent manipulation of stem cell fate" provides a novel molecular biological basis for development of potential therapeutic targets within tissue engineering, from both a cellular metabolic and a biomechanical perspective.PMID:37298263 | DOI:10.3390/ijms24119311

Progress towards Adjuvant Development: Focus on Antiviral Therapy

Sat, 10/06/2023 - 12:00
Int J Mol Sci. 2023 May 25;24(11):9225. doi: 10.3390/ijms24119225.ABSTRACTIn recent decades, vaccines have been extraordinary resources to prevent pathogen diffusion and cancer. Even if they can be formed by a single antigen, the addition of one or more adjuvants represents the key to enhance the response of the immune signal to the antigen, thus accelerating and increasing the duration and the potency of the protective effect. Their use is of particular importance for vulnerable populations, such as the elderly or immunocompromised people. Despite their importance, only in the last forty years has the search for novel adjuvants increased, with the discovery of novel classes of immune potentiators and immunomodulators. Due to the complexity of the cascades involved in immune signal activation, their mechanism of action remains poorly understood, even if significant discovery has been recently made thanks to recombinant technology and metabolomics. This review focuses on the classes of adjuvants under research, recent mechanism of action studies, as well as nanodelivery systems and novel classes of adjuvants that can be chemically manipulated to create novel small molecule adjuvants.PMID:37298177 | DOI:10.3390/ijms24119225

Indole Propionic Acid Increases T Regulatory Cells and Decreases T Helper 17 Cells and Blood Pressure in Mice with Salt-Sensitive Hypertension

Sat, 10/06/2023 - 12:00
Int J Mol Sci. 2023 May 24;24(11):9192. doi: 10.3390/ijms24119192.ABSTRACTHypertension affects over a billion adults worldwide and is a major risk factor for cardiovascular disease. Studies have reported that the microbiota and its metabolites regulate hypertension pathophysiology. Recently, tryptophan metabolites have been identified to contribute to and inhibit the progression of metabolic disorders and cardiovascular diseases, including hypertension. Indole propionic acid (IPA) is a tryptophan metabolite with reported protective effects in neurodegenerative and cardiovascular diseases; however, its involvement in renal immunomodulation and sodium handling in hypertension is unknown. In the current study, targeted metabolomic analysis revealed decreased serum and fecal IPA levels in mice with L-arginine methyl ester hydrochloride (L-NAME)/high salt diet-induced hypertension (LSHTN) compared to normotensive control mice. Additionally, kidneys from LSHTN mice had increased T helper 17 (Th17) cells and decreased T regulatory (Treg) cells. Dietary IPA supplementation in LSHTN mice for 3 weeks resulted in decreased systolic blood pressure, along with increased total 24 h and fractional sodium excretion. Kidney immunophenotyping demonstrated decreased Th17 cells and a trend toward increased Treg cells in IPA-supplemented LSHTN mice. In vitro, naïve T cells from control mice were skewed into Th17 or Treg cells. The presence of IPA decreased Th17 cells and increased Treg cells after 3 days. These results identify a direct role for IPA in attenuating renal Th17 cells and increasing Treg cells, leading to improved sodium handling and decreased blood pressure. IPA may be a potential metabolite-based therapeutic option for hypertension.PMID:37298145 | DOI:10.3390/ijms24119192

Review of Diagnostic Modalities for Adrenal Incidentaloma

Sat, 10/06/2023 - 12:00
J Clin Med. 2023 May 29;12(11):3739. doi: 10.3390/jcm12113739.ABSTRACTAdrenal incidentalomas are common findings in clinical practice, with a prevalence of up to 4.2% in radiological studies. Due to the large number of focal lesions in the adrenal glands, it can be challenging to make a definitive diagnosis and determine the appropriate management. The purpose of this review is to present current diagnostic modalities used to preoperatively distinguish between adrenocortical adenoma (ACA) and adrenocortical cancer (ACC). Proper management and diagnosis are crucial in avoiding unnecessary adrenalectomies, which occur in over 40% of cases. A literature analysis was conducted to compare ACA and ACC using imaging studies, hormonal evaluation, pathological workup, and liquid biopsy. Before deciding on surgical treatment, the nature of the tumor can be accurately determined using noncontrast CT imaging combined with tumor size and metabolomics. This approach helps to narrow down the group of patients with adrenal tumors who require surgical treatment due to the suspected malignant nature of the lesion.PMID:37297933 | DOI:10.3390/jcm12113739

Current Insights into the Metabolome during Hypothermic Kidney Perfusion-A Scoping Review

Sat, 10/06/2023 - 12:00
J Clin Med. 2023 May 23;12(11):3613. doi: 10.3390/jcm12113613.ABSTRACTThis scoping review summarizes what is known about kidney metabolism during hypothermic perfusion preservation. Papers studying kidney metabolism during hypothermic (<12 °C) perfusion were identified (PubMed, Embase, Web of Science, Cochrane). Out of 14,335 initially identified records, 52 were included [dog (26/52), rabbit (2/52), pig (20/52), human (7/52)]. These were published between 1970-2023, partially explaining study heterogeneity. There is a considerable risk of bias in the reported studies. Studies used different perfusates, oxygenation levels, kidney injury levels, and devices and reported on perfusate and tissue metabolites. In 11 papers, (non)radioactively labeled metabolites (tracers) were used to study metabolic pathways. Together these studies show that kidneys are metabolically active during hypothermic perfusion, regardless of the perfusion setting. Although tracers give us more insight into active metabolic pathways, kidney metabolism during hypothermic perfusion is incompletely understood. Metabolism is influenced by perfusate composition, oxygenation levels, and likely also by pre-existing ischemic injury. In the modern era, with increasing donations after circulatory death and the emergence of hypothermic oxygenated perfusion, the focus should be on understanding metabolic perturbations caused by pre-existing injury levels and the effect of perfusate oxygen levels. The use of tracers is indispensable to understanding the kidney's metabolism during perfusion, given the complexity of interactions between different metabolites.PMID:37297808 | DOI:10.3390/jcm12113613

Pregnancy in Patients with Moderate and Highly Complex Congenital Heart Disease

Sat, 10/06/2023 - 12:00
Healthcare (Basel). 2023 May 30;11(11):1592. doi: 10.3390/healthcare11111592.ABSTRACTAlthough not completely devoid of risk, pregnancy can be managed in virtually all patients affected by even the most complex forms of congenital heart disease. It is not however advisable in patients with any form of pulmonary arterial hypertension. Pregnancy is even manageable in patients with univentricular heart converted to Fontan circulation. A personalised risk stratification should be performed, and patients affected by advanced NYHA functional class appropriately warned of the potential risks. In this setting, metabolomics might represent a novel tool for use in conducting personalised risk stratification. All pregnancies, particularly those at higher risk, should be managed in a tertiary care centre capable of providing the necessary assistance to both the mother and infant. With a few rare exceptions, vaginal delivery is to be preferred over caesarean section due to the lower degree of maternal and foetal complications. The desire for motherhood, at times extreme in women with congenital heart disease, may often be accomplished, thus providing a ray of hope in the lives of these patients.PMID:37297732 | DOI:10.3390/healthcare11111592

Analysis of Metabolic Components of JUNCAO Wine Based on GC-QTOF-MS

Sat, 10/06/2023 - 12:00
Foods. 2023 Jun 3;12(11):2254. doi: 10.3390/foods12112254.ABSTRACTJUNCAO wine fermentation metabolites are closely related to the final quality of the product. Currently, there are no studies of dynamic metabolite changes during fermentation of JUNCAO wine. Here, we used gas chromatography quadrupole time-of-flight mass spectrometry (GC-QTOF-MS) metabolomics and multivariate statistical analysis to explore the relationship between metabolites and fermentation time. A total of 189 metabolites were annotated throughout the fermentation process. The principal component analysis (PCA) revealed a clear separation between the samples in the early and late stages of fermentation. A total of 60 metabolites were annotated as differential during the fermentation (variable importance in the projection, VIP > 1, and p < 0.05), including 21 organic acids, 10 amino acids, 15 sugars and sugar alcohols, and 14 other metabolites. Pathway analysis showed that the most commonly influenced pathways (impact value > 0.1 and p < 0.05) were tricarboxylic acid cycle, alanine, aspartic acid and glutamic acid metabolism, pyrimidine metabolism, and other 10 metabolic pathways. Moreover, integrated metabolic pathways are generated to understand the conversion and accumulation of differential metabolites. Overall, these results provide a comprehensive overview of metabolite changes during fermentation of JUNCAO wine.PMID:37297498 | DOI:10.3390/foods12112254

Metabolomics-Based Analyses of Dynamic Changes in Flavonoid Profiles in the Black Mulberry Winemaking Process

Sat, 10/06/2023 - 12:00
Foods. 2023 May 31;12(11):2221. doi: 10.3390/foods12112221.ABSTRACTTo overcome the fruit's perishability, mulberry wine has been developed as a method of preservation. However, dynamic changes in metabolites during mulberry wine fermentation have not been reported yet. In the present investigation, UHPLC-QE-MS/MS coupled with multivariate statistical analyses was employed to scrutinize the metabolic profiles, particularly the flavonoid profiles, throughout the process of vinification. In general, the major differential metabolites encompassed organic heterocyclic compounds, amino acids, phenylpropanoids, aromatic compounds, and carbohydrates. The contents of total sugar and alcohol play a primary role that drove the composition of amino acids, polyphenol, aromatic compound, and organic acid metabolites based on the Mantel test. Importantly, among the flavonoids, abundant in mulberry fruit, luteolin, luteolin-7-O-glucoside, (-)-epiafzelechin, eriodictyol, kaempferol, and quercetin were identified as the differential metabolic markers during blackberry wine fermentation and ripening. Flavonoid, flavone and flavonol biosynthesis were also identified to be the major metabolic pathways of flavonoids in 96 metabolic pathways. These results will provide new information on the dynamic changes in flavonoid profiles during black mulberry winemaking.PMID:37297465 | DOI:10.3390/foods12112221

Strategies to Assess the Impact of Sustainable Functional Food Ingredients on Gut Microbiota

Sat, 10/06/2023 - 12:00
Foods. 2023 May 31;12(11):2209. doi: 10.3390/foods12112209.ABSTRACTNowadays, it is evident that food ingredients have different roles and distinct health benefits to the consumer. Over the past years, the interest in functional foods, especially those targeting gut health, has grown significantly. The use of industrial byproducts as a source of new functional and sustainable ingredients as a response to such demands has raised interest. However, the properties of these ingredients can be affected once incorporated into different food matrices. Therefore, when searching for the least costly and most suitable, beneficial, and sustainable formulations, it is necessary to understand how such ingredients perform when supplemented in different food matrices and how they impact the host's health. As proposed in this manuscript, the ingredients' properties can be first evaluated using in vitro gastrointestinal tract (GIT) simulation models prior to validation through human clinical trials. In vitro models are powerful tools that mimic the physicochemical and physiological conditions of the GIT, enabling prediction of the potentials of functional ingredients per se and when incorporated into a food matrix. Understanding how newly developed ingredients from undervalued agro-industrial sources behave as supplements supports the development of new and more sustainable functional foods while scientifically backing up health-benefits claims.PMID:37297454 | DOI:10.3390/foods12112209

Pages