Integrative Molecular Phenotyping
INTEGRATIVE MOLECULAR
PHENOTYPING
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY

PubMed

Acetylation proteomics and metabolomics analyses reveal the involvement of starch synthase undergoing acetylation modification during UV-B stress resistance in Rhododendron Chrysanthum Pall

Fri, 03/05/2024 - 12:00
Hereditas. 2024 May 3;161(1):15. doi: 10.1186/s41065-024-00320-4.ABSTRACTBACKGROUND: Rhododendron chrysanthum Pall. (R. chrysanthum) is a plant that lives in high mountain with strong UV-B radiation, so R. chrysanthum possess resistance to UV-B radiation. The process of stress resistance in plants is closely related to metabolism. Lysine acetylation is an important post-translational modification, and this modification process is involved in a variety of biological processes, and affected the expression of enzymes in metabolic processes. However, little is known about acetylation proteomics during UV-B stress resistance in R. chrysanthum.RESULTS: In this study, R. chrysanthum OJIP curves indicated that UV-B stress damaged the receptor side of the PSII reaction center, with a decrease in photosynthesis, a decrease in sucrose content and an increase in starch content. A total of 807 differentially expressed proteins, 685 differentially acetylated proteins and 945 acetylation sites were identified by quantitative proteomic and acetylation modification histological analysis. According to COG and subcellular location analyses, DEPs with post-translational modification of proteins and carbohydrate metabolism had important roles in resistance to UV-B stress and DEPs were concentrated in chloroplasts. KEGG analyses showed that DEPs were enriched in starch and sucrose metabolic pathways. Analysis of acetylation modification histology showed that the enzymes in the starch and sucrose metabolic pathways underwent acetylation modification and the modification levels were up-regulated. Further analysis showed that only GBSS and SSGBSS changed to DEPs after undergoing acetylation modification. Metabolomics analyses showed that the metabolite content of starch and sucrose metabolism in R. chrysanthum under UV-B stress.CONCLUSIONS: Decreased photosynthesis in R. chrysanthum under UV-B stress, which in turn affects starch and sucrose metabolism. In starch synthesis, GBSS undergoes acetylation modification and the level is upregulated, promotes starch synthesis, making R. chrysanthum resistant to UV-B stress.PMID:38702800 | DOI:10.1186/s41065-024-00320-4

Metabolomics reveals high fructose-1,6-bisphosphate from fluoride-resistant Streptococcus mutans

Fri, 03/05/2024 - 12:00
BMC Microbiol. 2024 May 3;24(1):151. doi: 10.1186/s12866-024-03310-8.ABSTRACTBACKGROUND: Fluoride-resistant Streptococcus mutans (S. mutans) strains have developed due to the wide use of fluoride in dental caries prevention. However, the metabolomics of fluoride-resistant S. mutans remains unclear.OBJECTIVE: This study aimed to identify metabolites that discriminate fluoride-resistant from wild-type S. mutans.MATERIALS AND METHODS: Cell supernatants from fluoride-resistant and wild-type S. mutans were collected and analyzed by liquid chromatography-mass spectrometry. Principal components analysis and partial least-squares discriminant analysis were performed for the statistical analysis by variable influence on projection (VIP > 2.0) and p value (Mann-Whitney test, p < 0.05). Metabolites were assessed qualitatively using the Human Metabolome Database version 2.0 ( http://www.hmdb.ca ), or Kyoto Encyclopedia of Genes and Genomes ( http://www.kegg.jp ), and Metaboanalyst 6.0 ( https://www.metaboanalyst.ca ).RESULTS: Fourteen metabolites differed significantly between fluoride-resistant and wild-type strains in the early log phase. Among these metabolites, 5 were identified. There were 32 differential metabolites between the two strains in the stationary phase, 13 of which were identified. The pyrimidine metabolism for S. mutans FR was matched with the metabolic pathway.CONCLUSIONS: The fructose-1,6-bisphosphate concentration increased in fluoride-resistant strains under acidic conditions, suggesting enhanced acidogenicity and acid tolerance. This metabolite may be a promising target for elucidating the cariogenic and fluoride resistant mechanisms of S. mutans.PMID:38702601 | DOI:10.1186/s12866-024-03310-8

Storage conditions affect the composition of the lyophilized secretome of multipotent mesenchymal stromal cells

Fri, 03/05/2024 - 12:00
Sci Rep. 2024 May 3;14(1):10243. doi: 10.1038/s41598-024-60787-z.ABSTRACTThe widespread use of multipotent mesenchymal stromal cell-derived secretome (MSC-sec) requires optimal preservation methods. Lyophilization offers benefits like concentrating the secretome, reducing the storage volume, and making storage conditions more flexible. This study evaluated the influence of storage duration and temperature on lyophilized MSC-sec. The conditioned medium from Wharton's jelly MSCs was stored at - 80 °C or lyophilized with or without trehalose. Lyophilized formulations were kept at - 80 °C, - 20 °C, 4 °C, or room temperature (RT) for 3 and 30 months. After storage and reconstitution, the levels of growth factors and cytokines were assessed using multiplex assay. The storage of lyophilized MSC-sec at - 80 °C ensured biomolecule preservation for 3 and 30 months. Following 3 month storage at 4 °C and RT, a notable decrease occurred in BDNF, bNGF, and sVCAM-1 levels. Prolonged 30 month storage at the same temperatures significantly reduced BDNF, bNGF, VEGF-A, IL-6, and sVCAM-1, while storage at - 20 °C decreased BDNF, bNGF, and VEGF- A levels. Trehalose supplementation of MSC-sec improved the outcome during storage at 4 °C and RT. Proper storage conditions were crucial for the preservation of lyophilized MSC-sec composition. Short-term storage at various temperatures maintained over 60% of the studied growth factors and cytokines; long-term preservation was only adequate at -80 °C.PMID:38702388 | DOI:10.1038/s41598-024-60787-z

Dynamic molecular signatures of acute myocardial infarction based on transcriptomics and metabolomics

Fri, 03/05/2024 - 12:00
Sci Rep. 2024 May 3;14(1):10175. doi: 10.1038/s41598-024-60945-3.ABSTRACTAcute myocardial infarction (AMI) commonly precedes ventricular remodeling, heart failure. Few dynamic molecular signatures have gained widespread acceptance in mainstream clinical testing despite the discovery of many potential candidates. These unmet needs with respect to biomarker and drug discovery of AMI necessitate a prioritization. We enrolled patients with AMI aged between 30 and 70. RNA-seq analysis was performed on the peripheral blood mononuclear cells collected from the patients at three time points: 1 day, 7 days, and 3 months after AMI. PLC/LC-MS analysis was conducted on the peripheral blood plasma collected from these patients at the same three time points. Differential genes and metabolites between groups were screened by bio-informatics methods to understand the dynamic changes of AMI in different periods. We obtained 15 transcriptional and 95 metabolite expression profiles at three time points after AMI through high-throughput sequencing. AMI-1d: enrichment analysis revealed the biological features of 1 day after AMI primarily included acute inflammatory response, elevated glycerophospholipid metabolism, and decreased protein synthesis capacity. Phosphatidylcholine (PC) and phosphatidylethanolamine (PE) might stand promising biomarkers to differentiate post-AMI stage. Anti-inflammatory therapy during the acute phase is an important direction for preventing related pathology. AMI-7d: the biological features of this stage primarily involved the initiation of cardiac fibrosis response and activation of platelet adhesion pathways. Accompanied by upregulated TGF-beta signaling pathway and ECM receptor interaction, GP5 help assess platelet activation, a potential therapeutic target to improve haemostasis. AMI-3m: the biological features of 3 months after AMI primarily showed a vascular regeneration response with VEGF signaling pathway, NOS3 and SHC2 widely activated, which holds promise for providing new therapeutic approaches for AMI. Our analysis highlights transcriptional and metabolomics signatures at different time points after MI, which deepens our understanding of the dynamic biological responses and associated molecular mechanisms that occur during cardiac repair.PMID:38702356 | DOI:10.1038/s41598-024-60945-3

Discovery of immunotherapy targets for pediatric solid and brain tumors by exon-level expression

Fri, 03/05/2024 - 12:00
Nat Commun. 2024 May 3;15(1):3732. doi: 10.1038/s41467-024-47649-y.ABSTRACTImmunotherapy with chimeric antigen receptor T cells for pediatric solid and brain tumors is constrained by available targetable antigens. Cancer-specific exons present a promising reservoir of targets; however, these have not been explored and validated systematically in a pan-cancer fashion. To identify cancer specific exon targets, here we analyze 1532 RNA-seq datasets from 16 types of pediatric solid and brain tumors for comparison with normal tissues using a newly developed workflow. We find 2933 exons in 157 genes encoding proteins of the surfaceome or matrisome with high cancer specificity either at the gene (n = 148) or the alternatively spliced isoform (n = 9) level. Expression of selected alternatively spliced targets, including the EDB domain of fibronectin 1, and gene targets, such as COL11A1, are validated in pediatric patient derived xenograft tumors. We generate T cells expressing chimeric antigen receptors specific for the EDB domain or COL11A1 and demonstrate that these have antitumor activity. The full target list, explorable via an interactive web portal ( https://cseminer.stjude.org/ ), provides a rich resource for developing immunotherapy of pediatric solid and brain tumors using gene or AS targets with high expression specificity in cancer.PMID:38702309 | DOI:10.1038/s41467-024-47649-y

NP(3) MS Workflow: An Open-Source Software System to Empower Natural Product-Based Drug Discovery Using Untargeted Metabolomics

Fri, 03/05/2024 - 12:00
Anal Chem. 2024 May 3. doi: 10.1021/acs.analchem.3c05829. Online ahead of print.ABSTRACTNatural products (or specialized metabolites) are historically the main source of new drugs. However, the current drug discovery pipelines require miniaturization and speeds that are incompatible with traditional natural product research methods, especially in the early stages of the research. This article introduces the NP3 MS Workflow, a robust open-source software system for liquid chromatography-tandem mass spectrometry (LC-MS/MS) untargeted metabolomic data processing and analysis, designed to rank bioactive natural products directly from complex mixtures of compounds, such as bioactive biota samples. NP3 MS Workflow allows minimal user intervention as well as customization of each step of LC-MS/MS data processing, with diagnostic statistics to allow interpretation and optimization of LC-MS/MS data processing by the user. NP3 MS Workflow adds improved computing of the MS2 spectra in an LC-MS/MS data set and provides tools for automatic [M + H]+ ion deconvolution using fragmentation rules; chemical structural annotation against MS2 databases; and relative quantification of the precursor ions for bioactivity correlation scoring. The software will be presented with case studies and comparisons with equivalent tools currently available. NP3 MS Workflow shows a robust and useful approach to select bioactive natural products from complex mixtures, improving the set of tools available for untargeted metabolomics. It can be easily integrated into natural product-based drug-discovery pipelines and to other fields of research at the interface of chemistry and biology.PMID:38702053 | DOI:10.1021/acs.analchem.3c05829

Imidacloprid-induced lung injury in mice: Activation of the PI3K/AKT/NF-κB signaling pathway via TLR4 receptor engagement

Fri, 03/05/2024 - 12:00
Sci Total Environ. 2024 May 1:172910. doi: 10.1016/j.scitotenv.2024.172910. Online ahead of print.ABSTRACTSignificant impairment of pulmonary function has been demonstrated through long-term exposure to neonicotinoid insecticides, such as imidacloprid (IMI). However, the underlying mechanisms of lung injury induced by IMI remain unclear. In this study, a mouse model of IMI-induced pulmonary injury was established, and the toxicity and lung damage were assessed through mouse body weight, organ index, hematological parameters, and histopathological analysis of lung tissues. Furthermore, metabolomics and transcriptomics techniques were employed to explore the mechanistic aspects. Results from the toxicity assessments indicated that mouse body weight was significantly reduced by IMI, organ index was disturbed, and hematological parameters were disrupted, resulting in pulmonary injury. The mechanistic experimental results indicate that the differences in metabolites and gene expression in mouse lungs could be altered by IMI. Validation of the results through combined analysis of metabolomics and transcriptomics revealed that the mechanism by which IMI induces lung injury in mice might be associated with the activation of the TLR4 receptor, thereby activating the PI3K/AKT/NF-κB signaling pathway to induce inflammation in mouse lungs. This study provided valuable insights into the mechanisms underlying IMI-induced pulmonary damage, potentially contributing to the development of safer pest control strategies. The knowledge gained served as a robust scientific foundation for the prevention and treatment of IMI-related pulmonary injuries.PMID:38701926 | DOI:10.1016/j.scitotenv.2024.172910

The mitochondrial multi-omic response to exercise training across rat tissues

Fri, 03/05/2024 - 12:00
Cell Metab. 2024 Apr 15:S1550-4131(23)00472-2. doi: 10.1016/j.cmet.2023.12.021. Online ahead of print.ABSTRACTMitochondria have diverse functions critical to whole-body metabolic homeostasis. Endurance training alters mitochondrial activity, but systematic characterization of these adaptations is lacking. Here, the Molecular Transducers of Physical Activity Consortium mapped the temporal, multi-omic changes in mitochondrial analytes across 19 tissues in male and female rats trained for 1, 2, 4, or 8 weeks. Training elicited substantial changes in the adrenal gland, brown adipose, colon, heart, and skeletal muscle. The colon showed non-linear response dynamics, whereas mitochondrial pathways were downregulated in brown adipose and adrenal tissues. Protein acetylation increased in the liver, with a shift in lipid metabolism, whereas oxidative proteins increased in striated muscles. Exercise-upregulated networks were downregulated in human diabetes and cirrhosis. Knockdown of the central network protein 17-beta-hydroxysteroid dehydrogenase 10 (HSD17B10) elevated oxygen consumption, indicative of metabolic stress. We provide a multi-omic, multi-tissue, temporal atlas of the mitochondrial response to exercise training and identify candidates linked to mitochondrial dysfunction.PMID:38701776 | DOI:10.1016/j.cmet.2023.12.021

Cadmium phytoremediation potential of Houttuynia cordata: Insights from growth, uptake, and rhizosphere mechanisms

Fri, 03/05/2024 - 12:00
Ecotoxicol Environ Saf. 2024 May 2;278:116417. doi: 10.1016/j.ecoenv.2024.116417. Online ahead of print.ABSTRACTCadmium (Cd) pollutes 7.0 % of China's land area. This study examined the potential of Houttuynia cordata for Cd phytoremediation because of its ability to accumulate Cd in its growth matrix. H. cordata were planted in plastic pots filled with paddy field soils having low (LCd), medium (MCd), and high (HCd) Cd levels of 0.19, 0.69, and 2.91 mg/kg, respectively. After six months of growth, harvested plant parts were evaluated for Cd uptake and tolerance mechanisms. Metabolomics and metagenomics approaches were employed to investigate the soil rhizosphere mechanism. Results showed that the average plant biomass increased as soil Cd increased. The biomass Cd contents surpassed the allowable Cd limits for food (≤ 0.2 mg/kg) and medicinal uses (≤ 0.3 mg/kg). Cd contents were higher in H. cordata roots (30.59-86.27 mg/kg) than in other plant parts (0.63-2.90 mg/kg), with significantly increasing values as Cd soil level increased. Phenolic acids, lipids, amino acids and derivatives, organic acids, and alkaloids comprised the majority (69 in MCd vs HCd and 73 % in LCd vs HCd) of the shared upregulated metabolites. In addition, 13 metabolites specific to H. cordata root exudates were significantly increased. The top two principal metabolic pathways were arginine and proline metabolism, and beta-alanine metabolism. H. cordata increased the abundance of Firmicutes and Glomeromycota across all three Cd levels, and also stimulated the growth of Patescibacteria, Rozellomycota, and Claroideoglomus in HCd. Accordingly, H. cordata demonstrated potential for remediation of Cd-contaminated soils, and safety measures for its production and food use must be highly considered.PMID:38701655 | DOI:10.1016/j.ecoenv.2024.116417

Chronic lead poisoning-induced budgerigar liver damage, gut microbiota dysbiosis, and metabolic disorder

Fri, 03/05/2024 - 12:00
Ecotoxicol Environ Saf. 2024 May 2;278:116388. doi: 10.1016/j.ecoenv.2024.116388. Online ahead of print.ABSTRACTBirds are sensitive to heavy metal pollution, and lead (Pb) contamination can negatively affect their liver and gut. Therefore, we used budgerigars to examine liver and gut toxicosis caused by Pb exposure in bird, and the possible toxic mechanisms. The findings showed Pb exposure increased liver weight and decreased body weight. Moreover, histopathological and immunofluorescence assay results demonstrated obvious liver damage and cell apoptosis increased in Pb- treated budgerigars. Quantitative polymerase chain reaction (qPCR) results also showed Pb caused an increase in apoptosis by inhibiting the PPAR-γ/PI3K/Akt pathway. The gut microbe analyses indicated Firmicutes, Proteobacteria, and Bacteroidetes were dominant microbial phyla, and Network analysis results shown Arthrobacter, Bradyrhizobium and Alloprevotella as the hubs of Modules I, II, and III, respectively. Phenylpropanoids and polyketides, Organoheterocyclic compounds, Organic oxygen compounds, and Organic nitrogen compounds were dominant metabolite superclasses. Tauroursodeoxycholic acid, taurochenodeoxycholic acid (sodium salt), and 2-[2-(5-bromo-2-pyridyl)diaz-1-enyl]-5-(diethylamino)phenol were significantly enriched in the Pb-treated group. It showed that 41 Kyoto Encyclopedia of Genes and Genomes (KEGG) orthologues and 183 pathways differed between the Pb-treated and control budgerigars using microbial and metabolomic data. Moreover, orthogonal partial least-squares discrimination analysis (OPLS-DA) based on microbial and metabolite indicated distinct clusters in the Pb-treated and control groups. Additionally, the correlation analysis results indicated that a positive correlation for the Pb-treated and control groups between gut microbiota and metabolomic data, respectively. Furthermore, the microenvironment of the gut and liver were found to affect each other, and this study demonstrated heavy metal especially Pb may pose serious health risks to birds through the "gut-liver axis" too.PMID:38701653 | DOI:10.1016/j.ecoenv.2024.116388

Metabolic and neurobehavioral disturbances induced by purine recycling deficiency in <em>Drosophila</em>

Fri, 03/05/2024 - 12:00
Elife. 2024 May 3;12:RP88510. doi: 10.7554/eLife.88510.ABSTRACTAdenine phosphoribosyltransferase (APRT) and hypoxanthine-guanine phosphoribosyltransferase (HGPRT) are two structurally related enzymes involved in purine recycling in humans. Inherited mutations that suppress HGPRT activity are associated with Lesch-Nyhan disease (LND), a rare X-linked metabolic and neurological disorder in children, characterized by hyperuricemia, dystonia, and compulsive self-injury. To date, no treatment is available for these neurological defects and no animal model recapitulates all symptoms of LND patients. Here, we studied LND-related mechanisms in the fruit fly. By combining enzymatic assays and phylogenetic analysis, we confirm that no HGPRT activity is expressed in Drosophila melanogaster, making the APRT homolog (Aprt) the only purine-recycling enzyme in this organism. Whereas APRT deficiency does not trigger neurological defects in humans, we observed that Drosophila Aprt mutants show both metabolic and neurobehavioral disturbances, including increased uric acid levels, locomotor impairments, sleep alterations, seizure-like behavior, reduced lifespan, and reduction of adenosine signaling and content. Locomotor defects could be rescued by Aprt re-expression in neurons and reproduced by knocking down Aprt selectively in the protocerebral anterior medial (PAM) dopaminergic neurons, the mushroom bodies, or glia subsets. Ingestion of allopurinol rescued uric acid levels in Aprt-deficient mutants but not neurological defects, as is the case in LND patients, while feeding adenosine or N6-methyladenosine (m6A) during development fully rescued the epileptic behavior. Intriguingly, pan-neuronal expression of an LND-associated mutant form of human HGPRT (I42T), but not the wild-type enzyme, resulted in early locomotor defects and seizure in flies, similar to Aprt deficiency. Overall, our results suggest that Drosophila could be used in different ways to better understand LND and seek a cure for this dramatic disease.PMID:38700995 | DOI:10.7554/eLife.88510

Protocol for in vitro phospholipid synthesis combining fatty acid synthesis and cell-free gene expression

Fri, 03/05/2024 - 12:00
STAR Protoc. 2024 May 2;5(2):103051. doi: 10.1016/j.xpro.2024.103051. Online ahead of print.ABSTRACTPhospholipids are important biomolecules for the study of lipidomics, signal transduction, biodiesel, and synthetic biology; however, it is difficult to synthesize and analyze phospholipids in a defined in vitro condition. Here, we present a protocol for in vitro production and quantification of phospholipids. We describe steps for preparing a cell-free system consisting of fatty acid synthesis and a gene expression system that synthesizes acyltransferases on liposomes. The whole reaction can be completed within a day and the products are quantified by liquid chromatography-mass spectrometry. For complete details on the use and execution of this protocol, please refer to Eto et al.1.PMID:38700978 | DOI:10.1016/j.xpro.2024.103051

Protocol for genome-wide association study of human blood metabolites

Fri, 03/05/2024 - 12:00
STAR Protoc. 2024 May 2;5(2):103052. doi: 10.1016/j.xpro.2024.103052. Online ahead of print.ABSTRACTGenetic variations influence the levels of blood metabolites. We present analytical pipelines for assessing genetic influences on human blood metabolites. We describe steps for the normalization of metabolome data, genome-wide association studies, and the identification of metabolite quantitative trait loci (mQTLs). We then detail procedures for functional enrichment analysis of mQTLs. This protocol could be applicable to other quantitative traits, such as clinical measurements or proteome data. For complete details on the use and execution of this protocol, please refer to Iwasaki et al.1.PMID:38700977 | DOI:10.1016/j.xpro.2024.103052

Portulaca oleracea exhibited anti-coccidian activity, fortified the gut microbiota of Hu lambs

Fri, 03/05/2024 - 12:00
AMB Express. 2024 May 3;14(1):50. doi: 10.1186/s13568-024-01705-4.ABSTRACTCoccidia of the genus Eimeria are important pathogens that cause coccidiosis in livestock and poultry. Due to the expansion of intensive farming, coccidiosis has become more difficult to control. In addition, the continued use of anti-coccidiosis drugs has led to drug resistance and residue. Some herbs used in traditional Chinese medicine (TCM) have been shown to alleviate the clinical symptoms of coccidiosis, while enhancing immunity and growth performance (GP) of livestock and poultry. Previous in vitro and in vivo studies have reported that the TCM herb Portulaca oleracea exhibited anti-parasitic activities. In total, 36 female Hu lambs were equally divided into six treatment groups: PL (low-dose P. oleracea), PH (high-dose P. oleracea), PW (P. oleracea water extract), PE (P. oleracea ethanol extract), DIC (diclazuril), and CON (control). The treatment period was 14 days. The McMaster counting method was used to evaluate the anti-coccidiosis effects of the different treatments. Untargeted metabolomics and 16S rRNA gene sequencing were used to investigate the effects of treatment on the gut microbiota (GM) and GP. The results showed that P. oleracea ameliorated coccidiosis, improved GP, increased the abundances of beneficial bacteria, and maintained the composition of the GM, but failed to completely clear coccidian oocysts. The Firmicutes to Bacteroides ratio was significantly increased in the PH group. P. oleracea increased metabolism of tryptophan as well as some vitamins and cofactors in the GM and decreased the relative content of arginine, tryptophan, niacin, and other nutrients, thereby promoting intestinal health and enhancing GP. As an alternative to the anti-coccidiosis drug DIC, P. oleracea effectively inhibited growth of coccidia, maintained the composition of the GM, promoted intestinal health, and increased nutrient digestibility.PMID:38700828 | DOI:10.1186/s13568-024-01705-4

SIRT1 maintains bone homeostasis by regulating osteoblast glycolysis through GOT1

Fri, 03/05/2024 - 12:00
Cell Mol Life Sci. 2024 May 3;81(1):204. doi: 10.1007/s00018-023-05043-9.ABSTRACTThe silent information regulator T1 (SIRT1) is linked to longevity and is a crucial mediator of osteoblast function. We investigated the direct role of Sirt1 during bone modeling and remodeling stages in vivo using Tamoxifen-inducible osteoblast-specific Sirt1 conditional knockout (cKO) mice. cKO mice exhibited lower trabecular and cortical bone mass in the distal femur. These phenotypes were coupled with lower bone formation and bone resorption. Metabolomics analysis revealed that the metabolites involved in glycolysis were significantly decreased in cKO mice. Further analysis of the quantitative acetylome revealed 11 proteins with upregulated acetylation levels in both the femur and calvaria of cKO mice. Cross-analysis identified four proteins with the same upregulated lysine acetylation site in both the femur and calvaria of cKO mice. A combined analysis of the metabolome and acetylome, as well as immunoprecipitation, gene knockout, and site-mutation experiments, revealed that Sirt1 deletion inhibited glycolysis by directly binding to and increasing the acetylation level of Glutamine oxaloacetic transaminase 1 (GOT1). In conclusion, our study suggested that Sirt1 played a crucial role in regulating osteoblast metabolism to maintain bone homeostasis through its deacetylase activity on GOT1. These findings provided a novel insight into the potential targeting of osteoblast metabolism for the treatment of bone-related diseases.PMID:38700532 | DOI:10.1007/s00018-023-05043-9

Aspirin Metabolites and Mammographic Breast Density in Premenopausal Women

Fri, 03/05/2024 - 12:00
Cancer Epidemiol Biomarkers Prev. 2024 May 3. doi: 10.1158/1055-9965.EPI-24-0017. Online ahead of print.ABSTRACTBACKGROUND: Studies investigating the associations of self-reported aspirin use and mammographic breast density (MBD) have reported conflicting results. We, therefore, investigated the associations of aspirin metabolites, with MBD in premenopausal women.METHODS: We performed this study on 705 premenopausal women who had fasting blood draw for metabolomic profiling. We performed covariate-adjusted linear regression models to calculate the least squares means of volumetric measures of MBD (volumetric percent density (VPD), dense volume (DV), and non-dense volume (NDV)) by quartiles of aspirin metabolites (salicyluric glucuronide, 2-hydroxyhippurate (salicylurate), salicylate, and 2,6-dihydroxybenzoic acid).RESULTS: Approximately 13% of participants reported taking aspirin in the past 12 months. Aspirin users had higher levels of 2-hydroxyhippurate (salicylurate), salicylate, and salicyluric glucuronide (peak area) than non-users, but only mean peak area of salicyluric glucuronide increased by both dose (1-2 tabs per day=1,140,663.7, and ≥3 tabs per day=1,380,476.0) and frequency (days per week: 1 day=888,129.3, 2-3 days=1,199,897.9 and ≥4 days=1,654,637.0). Aspirin metabolites were not monotonically associated with VPD, DV, or NDV.CONCLUSIONS: Given the null results, additional research investigating the associations of aspirin metabolites in breast tissue and MBD is necessary.IMPACT: Elucidating the determinants of MBD, a strong risk factor for breast cancer, can play an important role in breast cancer prevention. Future studies should determine the associations of non-aspirin non-steroidal anti-inflammatory drug metabolites with MBD.PMID:38700429 | DOI:10.1158/1055-9965.EPI-24-0017

Role of microbiota-gut-brain axis in natural aging-related alterations in behavior

Fri, 03/05/2024 - 12:00
Front Neurosci. 2024 Apr 18;18:1362239. doi: 10.3389/fnins.2024.1362239. eCollection 2024.ABSTRACTINTRODUCTION: Aging is a complex, time-dependent biological process that involves a decline of overall function. Over the past decade, the field of intestinal microbiota associated with aging has received considerable attention. However, there is limited information surrounding microbiota-gut-brain axis (MGBA) to further reveal the mechanism of aging.METHODS: In this study, locomotory function and sensory function were evaluated through a series of behavioral tests.Metabolic profiling were determined by using indirect calorimetry.16s rRNA sequence and targeted metabolomics analyses were performed to investigate alterations in the gut microbiota and fecal short-chain fatty acids (SCFAs). The serum cytokines were detected by a multiplex cytokine assay.The expression of proinflammatory factors were detected by western blotting.RESULTS: Decreased locomotor activity, decreased pain sensitivity, and reduced respiratory metabolic profiling were observed in aged mice. High-throughput sequencing revealed that the levels of genus Lactobacillus and Dubosiella were reduced, and the levels of genus Alistipes and Bacteroides were increased in aged mice. Certain bacterial genus were directly associated with the decline of physiological behaviors in aged mice. Furthermore, the amount of fecal SCFAs in aged mice was decreased, accompanied by an upregulation in the circulating pro-inflammatory cytokines and increased expression of inflammatory factors in the brain.DISCUSSION: Aging-induced microbial dysbiosis was closely related with the overall decline in behavior, which may attribute to the changes in metabolic products, e.g., SCFAs, caused by an alteration in the gut microbiota, leading to inflammaging and contributing to neurological deficits. Investigating the MGBA might provide a novel viewpoint to exploring the pathogenesis of aging and expanding appropriate therapeutic targets.PMID:38699678 | PMC:PMC11063250 | DOI:10.3389/fnins.2024.1362239

Metabolomics analysis based on UHPLC-QqQ-MS/MS to discriminate grapes and wines from different geographical origins and climatological characteristics

Fri, 03/05/2024 - 12:00
Food Chem X. 2024 Apr 18;22:101396. doi: 10.1016/j.fochx.2024.101396. eCollection 2024 Jun 30.ABSTRACTWith the proliferation of the consumer's awareness of wine provenance, wines with unique origin characteristics are increasingly in demand. This study aimed to investigate the influence of geographical origins and climatological characteristics on grapes and wines. A total of 94 anthocyanins and 78 non-anthocyanin phenolic compounds in grapes and wines from five Chinese viticultural vineyards (CJ, WH, QTX, WW, and XY) were identified by UHPLC-QqQ-MS/MS. Chemometric methods PCA and OPLS-DA were established to select candidate differential metabolites, including flavonols, stilbenes, hydroxycinnamic acids, peonidin derivatives, and malvidin derivatives. CCA showed that malvidin-3-O-glucoside had a positive correlation with mean temperature, and quercetin-3-O-glucoside had a negative correlation with precipitation. In addition, enrichment analysis elucidated that the metabolic diversity in different origins mainly occurred in flavonoid biosynthesis. This study would provide some new insights to understand the effect of geographical origins and climatological characteristics on phenolic compounds in grapes and wines.PMID:38699585 | PMC:PMC11063387 | DOI:10.1016/j.fochx.2024.101396

Precision Phenotyping for Curating Research Cohorts of Patients with Post-Acute Sequelae of COVID-19 (PASC) as a Diagnosis of Exclusion

Fri, 03/05/2024 - 12:00
medRxiv [Preprint]. 2024 Apr 16:2024.04.13.24305771. doi: 10.1101/2024.04.13.24305771.ABSTRACTScalable identification of patients with the post-acute sequelae of COVID-19 (PASC) is challenging due to a lack of reproducible precision phenotyping algorithms and the suboptimal accuracy, demographic biases, and underestimation of the PASC diagnosis code (ICD-10 U09.9). In a retrospective case-control study, we developed a precision phenotyping algorithm for identifying research cohorts of PASC patients, defined as a diagnosis of exclusion. We used longitudinal electronic health records (EHR) data from over 295 thousand patients from 14 hospitals and 20 community health centers in Massachusetts. The algorithm employs an attention mechanism to exclude sequelae that prior conditions can explain. We performed independent chart reviews to tune and validate our precision phenotyping algorithm. Our PASC phenotyping algorithm improves precision and prevalence estimation and reduces bias in identifying Long COVID patients compared to the U09.9 diagnosis code. Our algorithm identified a PASC research cohort of over 24 thousand patients (compared to about 6 thousand when using the U09.9 diagnosis code), with a 79.9 percent precision (compared to 77.8 percent from the U09.9 diagnosis code). Our estimated prevalence of PASC was 22.8 percent, which is close to the national estimates for the region. We also provide an in-depth analysis outlining the clinical attributes, encompassing identified lingering effects by organ, comorbidity profiles, and temporal differences in the risk of PASC. The PASC phenotyping method presented in this study boasts superior precision, accurately gauges the prevalence of PASC without underestimating it, and exhibits less bias in pinpointing Long COVID patients. The PASC cohort derived from our algorithm will serve as a springboard for delving into Long COVID's genetic, metabolomic, and clinical intricacies, surmounting the constraints of recent PASC cohort studies, which were hampered by their limited size and available outcome data.PMID:38699316 | PMC:PMC11065031 | DOI:10.1101/2024.04.13.24305771

Plasma-based lipidomics reveals potential diagnostic biomarkers for esophageal squamous cell carcinoma: a retrospective study

Fri, 03/05/2024 - 12:00
PeerJ. 2024 Apr 29;12:e17272. doi: 10.7717/peerj.17272. eCollection 2024.ABSTRACTBACKGROUND: Esophageal squamous cell carcinoma (ESCC) is highly prevalent and has a high mortality rate. Traditional diagnostic methods, such as imaging examinations and blood tumor marker tests, are not effective in accurately diagnosing ESCC due to their low sensitivity and specificity. Esophageal endoscopic biopsy, which is considered as the gold standard, is not suitable for screening due to its invasiveness and high cost. Therefore, this study aimed to develop a convenient and low-cost diagnostic method for ESCC using plasma-based lipidomics analysis combined with machine learning (ML) algorithms.METHODS: Plasma samples from a total of 40 ESCC patients and 31 healthy controls were used for lipidomics study. Untargeted lipidomics analysis was conducted through liquid chromatography-mass spectrometry (LC-MS) analysis. Differentially expressed lipid features were filtered based on multivariate and univariate analysis, and lipid annotation was performed using MS-DIAL software.RESULTS: A total of 99 differential lipids were identified, with 15 up-regulated lipids and 84 down-regulated lipids, suggesting their potential as diagnostic targets for ESCC. In the single-lipid plasma-based diagnostic model, nine specific lipids (FA 15:4, FA 27:1, FA 28:7, FA 28:0, FA 36:0, FA 39:0, FA 42:0, FA 44:0, and DG 37:7) exhibited excellent diagnostic performance, with an area under the curve (AUC) exceeding 0.99. Furthermore, multiple lipid-based ML models also demonstrated comparable diagnostic ability for ESCC. These findings indicate plasma lipids as a promising diagnostic approach for ESCC.PMID:38699187 | PMC:PMC11064858 | DOI:10.7717/peerj.17272

Pages