Integrative Molecular Phenotyping
INTEGRATIVE MOLECULAR
PHENOTYPING
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY

PubMed

Point-of-care human milk concentration by passive osmosis: comprehensive analysis of fresh human milk samples

Fri, 17/05/2024 - 12:00
J Perinatol. 2024 May 17. doi: 10.1038/s41372-024-01988-2. Online ahead of print.ABSTRACTOBJECTIVE: Preterm infants need enrichment of human milk (HM) for optimal growth. This study evaluated a novel, point-of-care human milk concentration (HMC) process for water removal from fresh HM samples by passive osmotic concentration.STUDY DESIGN: Nineteen fresh HM samples were concentrated by incubation with the HMC devices for 3 h at 4 °C. Pre- and post-concentration HM samples were compared by HM properties for: pH, osmolality, macronutrients, enzyme activity, bioactive, and total cell viability.RESULTS: Passive osmotic concentration reduced HM volume by an average of 16.3% ± 3.8% without a significant effect on pH or cell viability. Ten of the 41 HM components did not differ significantly (p > 0.05) between pre- and post-concentration samples. Twenty-three increased within the expected range by volume reduction. Six increased more than expected, two less than expected, and none decreased significantly.CONCLUSION: Passive osmotic concentration of fresh HM can concentrate HM components by selective removal of water. HM osmolality and pH remained within neonatal feeding parameters.PMID:38760580 | DOI:10.1038/s41372-024-01988-2

Ferritinophagy mediates adaptive resistance to EGFR tyrosine kinase inhibitors in non-small cell lung cancer

Fri, 17/05/2024 - 12:00
Nat Commun. 2024 May 17;15(1):4195. doi: 10.1038/s41467-024-48433-8.ABSTRACTOsimertinib (Osi) is a widely used epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI). However, the emergence of resistance is inevitable, partly due to the gradual evolution of adaptive resistant cells during initial treatment. Here, we find that Osi treatment rapidly triggers adaptive resistance in tumor cells. Metabolomics analysis reveals a significant enhancement of oxidative phosphorylation (OXPHOS) in Osi adaptive-resistant cells. Mechanically, Osi treatment induces an elevation of NCOA4, a key protein of ferritinophagy, which maintains the synthesis of iron-sulfur cluster (ISC) proteins of electron transport chain and OXPHOS. Additionally, active ISC protein synthesis in adaptive-resistant cells significantly increases the sensitivity to copper ions. Combining Osi with elesclomol, a copper ion ionophore, significantly increases the efficacy of Osi, with no additional toxicity. Altogether, this study reveals the mechanisms of NCOA4-mediated ferritinophagy in Osi adaptive resistance and introduces a promising new therapy of combining copper ionophores to improve its initial efficacy.PMID:38760351 | DOI:10.1038/s41467-024-48433-8

Host microbiome depletion attenuates biofluid metabolite responses following radiation exposure

Fri, 17/05/2024 - 12:00
PLoS One. 2024 May 17;19(5):e0300883. doi: 10.1371/journal.pone.0300883. eCollection 2024.ABSTRACTDevelopment of novel biodosimetry assays and medical countermeasures is needed to obtain a level of radiation preparedness in the event of malicious or accidental mass exposures to ionizing radiation (IR). For biodosimetry, metabolic profiling with mass spectrometry (MS) platforms has identified several small molecules in easily accessible biofluids that are promising for dose reconstruction. As our microbiome has profound effects on biofluid metabolite composition, it is of interest how variation in the host microbiome may affect metabolomics based biodosimetry. Here, we 'knocked out' the microbiome of male and female C57BL/6 mice (Abx mice) using antibiotics and then irradiated (0, 3, or 8 Gy) them to determine the role of the host microbiome on biofluid radiation signatures (1 and 3 d urine, 3 d serum). Biofluid metabolite levels were compared to a sham and irradiated group of mice with a normal microbiome (Abx-con mice). To compare post-irradiation effects in urine, we calculated the Spearman's correlation coefficients of metabolite levels with radiation dose. For selected metabolites of interest, we performed more detailed analyses using linear mixed effect models to determine the effects of radiation dose, time, and microbiome depletion. Serum metabolite levels were compared using an ANOVA. Several metabolites were affected after antibiotic administration in the tryptophan and amino acid pathways, sterol hormone, xenobiotic and bile acid pathways (urine) and lipid metabolism (serum), with a post-irradiation attenuative effect observed for Abx mice. In urine, dose×time interactions were supported for a defined radiation metabolite panel (carnitine, hexosamine-valine-isoleucine [Hex-V-I], creatine, citric acid, and Nε,Nε,Nε-trimethyllysine [TML]) and dose for N1-acetylspermidine, which also provided excellent (AUROC ≥ 0.90) to good (AUROC ≥ 0.80) sensitivity and specificity according to the area under the receiver operator characteristic curve (AUROC) analysis. In serum, a panel consisting of carnitine, citric acid, lysophosphatidylcholine (LysoPC) (14:0), LysoPC (20:3), and LysoPC (22:5) also gave excellent to good sensitivity and specificity for identifying post-irradiated individuals at 3 d. Although the microbiome affected the basal levels and/or post-irradiation levels of these metabolites, their utility in dose reconstruction irrespective of microbiome status is encouraging for the use of metabolomics as a novel biodosimetry assay.PMID:38758927 | DOI:10.1371/journal.pone.0300883

Toward the Reconciliation of Inconsistent Molecular Structures from Biochemical Databases

Fri, 17/05/2024 - 12:00
J Comput Biol. 2024 May 17. doi: 10.1089/cmb.2024.0520. Online ahead of print.ABSTRACTInformation on the structure of molecules, retrieved via biochemical databases, plays a pivotal role in various disciplines, including metabolomics, systems biology, and drug discovery. No such database can be complete and it is often necessary to incorporate data from several sources. However, the molecular structure for a given compound is not necessarily consistent between databases. This article presents StructRecon, a novel tool for resolving unique molecular structures from database identifiers. Currently, identifiers from BiGG, ChEBI, Escherichia coli Metabolome Database (ECMDB), MetaNetX, and PubChem are supported. StructRecon traverses the cross-links between entries in different databases to construct what we call identifier graphs. The goal of these graphs is to offer a more complete view of the total information available on a given compound across all the supported databases. To reconcile discrepancies met during the traversal of the databases, we develop an extensible model for molecular structure supporting multiple independent levels of detail, which allows standardization of the structure to be applied iteratively. In some cases, our standardization approach results in multiple candidate structures for a given compound, in which case a random walk-based algorithm is used to select the most likely structure among incompatible alternatives. As a case study, we applied StructRecon to the EColiCore2 model. We found at least one structure for 98.66% of its compounds, which is more than twice as many as possible when using the databases in more standard ways not considering the complex network of cross-database references captured by our identifier graphs. StructRecon is open-source and modular, which enables support for more databases in the future.PMID:38758924 | DOI:10.1089/cmb.2024.0520

De novo transcriptome and lipidome analysis of Desmodesmus abundans under model flue gas reveals adaptive changes after ten years of acclimation to high CO2

Fri, 17/05/2024 - 12:00
PLoS One. 2024 May 17;19(5):e0299780. doi: 10.1371/journal.pone.0299780. eCollection 2024.ABSTRACTMicroalgae's ability to mitigate flue gas is an attractive technology that can valorize gas components through biomass conversion. However, tolerance and growth must be ideal; therefore, acclimation strategies are suggested. Here, we compared the transcriptome and lipidome of Desmodesmus abundans strains acclimated to high CO2 (HCA) and low CO2 (LCA) under continuous supply of model flue gas (MFG) and incomplete culture medium (BG11-N-S). Initial growth and nitrogen consumption from MFG were superior in strain HCA, reaching maximum productivity a day before strain LCA. However, similar productivities were attained at the end of the run, probably because maximum photobioreactor capacity was reached. RNA-seq analysis during exponential growth resulted in 16,435 up-regulated and 4,219 down-regulated contigs in strain HCA compared to LCA. Most differentially expressed genes (DEGs) were related to nucleotides, amino acids, C fixation, central carbon metabolism, and proton pumps. In all pathways, a higher number of up-regulated contigs with a greater magnitude of change were observed in strain HCA. Also, cellular component GO terms of chloroplast and photosystems, N transporters, and secondary metabolic pathways of interest, such as starch and triacylglycerols (TG), exhibited this pattern. RT-qPCR confirmed N transporters expression. Lipidome analysis showed increased glycerophospholipids in strain HCA, while LCA exhibited glycerolipids. Cell structure and biomass composition also revealed strains differences. HCA possessed a thicker cell wall and presented a higher content of pigments, while LCA accumulated starch and lipids, validating transcriptome and lipidome data. Overall, results showed significant differences between strains, where characteristic features of adaptation and tolerance to high CO2 might be related to the capacity to maintain a higher flux of internal C, regulate intracellular acidification, active N transporters, and synthesis of essential macromolecules for photosynthetic growth.PMID:38758755 | DOI:10.1371/journal.pone.0299780

Comprehensive <em>O</em>-Glycan Analysis by Porous Graphitized Carbon Nanoliquid Chromatography-Mass Spectrometry

Fri, 17/05/2024 - 12:00
Anal Chem. 2024 May 17. doi: 10.1021/acs.analchem.3c05826. Online ahead of print.ABSTRACTThe diverse and unpredictable structures of O-GalNAc-type protein glycosylation present a challenge for its structural and functional characterization in a biological system. Porous graphitized carbon (PGC) liquid chromatography (LC) coupled to mass spectrometry (MS) has become one of the most powerful methods for the global analysis of glycans in complex biological samples, mainly due to the extensive chromatographic separation of (isomeric) glycan structures and the information delivered by collision induced fragmentation in negative mode MS for structural elucidation. However, current PGC-based methodologies fail to detect the smaller glycan species consisting of one or two monosaccharides, such as the Tn (single GalNAc) antigen, which is broadly implicated in cancer biology. This limitation is caused by the loss of small saccharides during sample preparation and LC. Here, we improved the conventional PGC nano-LC-MS/MS-based strategy for O-glycan analysis, enabling the detection of truncated O-glycan species and improving isomer separation. This was achieved by the implementation of 2.7 μm PGC particles in both the trap and analytical LC columns, which provided an enhanced binding capacity and isomer separation for O-glycans. Furthermore, a novel mixed-mode PGC-boronic acid-solid phase extraction during sample preparation was established to purify a broad range of glycans in an unbiased manner, including the previously missed mono- and disaccharides. Taken together, the optimized PGC nano-LC-MS/MS platform presents a powerful component of the toolbox for comprehensive O-glycan characterization.PMID:38758656 | DOI:10.1021/acs.analchem.3c05826

Spatial and Temporal Resolution of Cyanobacterial Bloom Chemistry Reveals an Open-Ocean <em>Trichodesmium thiebautii</em> as a Talented Producer of Specialized Metabolites

Fri, 17/05/2024 - 12:00
Environ Sci Technol. 2024 May 17. doi: 10.1021/acs.est.3c10739. Online ahead of print.ABSTRACTWhile the ecological role that Trichodesmium sp. play in nitrogen fixation has been widely studied, little information is available on potential specialized metabolites that are associated with blooms and standing stock Trichodesmium colonies. While a collection of biological material from a T. thiebautii bloom event from North Padre Island, Texas, in 2014 indicated that this species was a prolific producer of chlorinated specialized metabolites, additional spatial and temporal resolution was needed. We have completed these metabolite comparison studies, detailed in the current report, utilizing LC-MS/MS-based molecular networking to visualize and annotate the specialized metabolite composition of these Trichodesmium blooms and colonies in the Gulf of Mexico (GoM) and other waters. Our results showed that T. thiebautii blooms and colonies found in the GoM have a remarkably consistent specialized metabolome. Additionally, we isolated and characterized one new macrocyclic compound from T. thiebautii, trichothilone A (1), which was also detected in three independent cultures of T. erythraeum. Genome mining identified genes predicted to synthesize certain functional groups in the T. thiebautii metabolites. These results provoke intriguing questions of how these specialized metabolites affect Trichodesmium ecophysiology, symbioses with marine invertebrates, and niche development in the global oligotrophic ocean.PMID:38758591 | DOI:10.1021/acs.est.3c10739

Untargeted Metabolomics Reveals Fruit Secondary Metabolites Alter Bat Nutrient Absorption

Fri, 17/05/2024 - 12:00
J Chem Ecol. 2024 May 17. doi: 10.1007/s10886-024-01503-z. Online ahead of print.ABSTRACTThe ecological interaction between fleshy fruits and frugivores is influenced by diverse mixtures of secondary metabolites that naturally occur in the fruit pulp. Although some fruit secondary metabolites have a primary role in defending the pulp against antagonistic frugivores, these metabolites also potentially affect mutualistic interactions. The physiological impact of these secondary metabolites on mutualistic frugivores remains largely unexplored. Using a mutualistic fruit bat (Carollia perspicillata), we showed that ingesting four secondary metabolites commonly found in plant tissues affects bat foraging behavior and induces changes in the fecal metabolome. Our behavioral trials showed that the metabolites tested typically deter bats. Our metabolomic surveys suggest that secondary metabolites alter, either by increasing or decreasing, the absorption of essential macronutrients. These behavioral and physiological effects vary based on the specific identity and concentration of the metabolite tested. Our results also suggest that a portion of the secondary metabolites consumed is excreted by the bat intact or slightly modified. By identifying key shifts in the fecal metabolome of a mutualistic frugivore caused by secondary metabolite consumption, this study improves our understanding of the effects of fruit chemistry on frugivore physiology.PMID:38758510 | DOI:10.1007/s10886-024-01503-z

Quantitative Non-targeted Screening to Profile Micropollutants in Sewage Sludge Used for Agricultural Field Amendments

Fri, 17/05/2024 - 12:00
Environ Sci Technol. 2024 May 17. doi: 10.1021/acs.est.4c01441. Online ahead of print.ABSTRACTA considerable number of micropollutants from human activities enter the wastewater network for removal. However, at the wastewater treatment plant (WWTP), some proportion of these compounds is retained in the sewage sludge (biosolids), and due to its high content of nutrients, sludge is widely applied as an agricultural fertilizer and becomes a means for the micropollutants to be introduced to the environment. Accordingly, a holistic semiquantitative nontarget screening was performed on sewage sludges from five different WWTPs using nanoflow liquid chromatography coupled to high-resolution Orbitrap mass spectrometry. Sixty-one inorganic elements were measured using inductively coupled plasma mass spectrometry. Across all sludges, the nontarget analysis workflow annotated >21,000 features with chemical structures, and after strict prioritization and filtering, 120 organic micropollutants with diverse chemical structures and applications such as pharmaceuticals, pesticides, flame retardants, and industrial and natural compounds were identified. None of the tested sludges were free from organic micropollutants. Pharmaceuticals contributed the largest share followed by pesticides and natural products. The predicted concentration of identified contaminants ranged between 0.2 and 10,881 ng/g dry matter. Through quantitative nontarget analysis, this study comprehensively demonstrated the occurrence of cocktails of micropollutants in sewage sludges.PMID:38758285 | DOI:10.1021/acs.est.4c01441

Design, synthesis, antitumor activity and NMR-based metabolomics of novel amino substituted tetracyclic imidazo[4,5-b]pyridine derivatives

Fri, 17/05/2024 - 12:00
ChemMedChem. 2024 May 17:e202300633. doi: 10.1002/cmdc.202300633. Online ahead of print.ABSTRACTNewly prepared tetracyclic imidazo[4,5-b]pyridine derivatives were synthesized to study their antiproliferative activity against human cancer cells. Additionally, the structure-activity was studied to confirm the impact of the N atom position in pyridine nuclei as well as the chosen amino side chains on antiproliferative activity. Targeted amino substituted regioisomers were prepared by using uncatalyzed amination from corresponding chloro substituted precursors. The most active compounds 6a, 8 and 10 showed improved activity in comparison to standard drug etoposide with IC50 values in a nanomolar range of concentration (0.2 - 0.9 μM). NMR-based metabolomics is a powerful instrument to elucidate activity mechanism of new chemotherapeutics. Multivariate and univariate statistical analysis of metabolic profiles of non-small cell lung cancer cells before and after exposure to 6a revealed significant changes in metabolism of essential amino acids, glycerophospholipids and oxidative defense. Insight into the changes of metabolic pathways that are heavily involved in cell proliferation and survival provide valuable guidelines for more detailed analysis of activity metabolism and possible targets of this class of bioactive compounds.PMID:38757872 | DOI:10.1002/cmdc.202300633

A PET-Surrogate Signature for the Interrogation of the Metabolic Status of Breast Cancers

Fri, 17/05/2024 - 12:00
Adv Sci (Weinh). 2024 May 17:e2308255. doi: 10.1002/advs.202308255. Online ahead of print.ABSTRACTMetabolic alterations in cancers can be exploited for diagnostic, prognostic, and therapeutic purposes. This is exemplified by 18F-fluorodeoxyglucose (FDG)-positron emission tomography (FDG-PET), an imaging tool that relies on enhanced glucose uptake by tumors for diagnosis and staging. By performing transcriptomic analysis of breast cancer (BC) samples from patients stratified by FDG-PET, a 54-gene signature (PETsign) is identified that recapitulates FDG uptake. PETsign is independently prognostic of clinical outcome in luminal BCs, the most common and heterogeneous BC molecular subtype, which requires improved stratification criteria to guide therapeutic decision-making. The prognostic power of PETsign is stable across independent BC cohorts and disease stages including the earliest BC stage, arguing that PETsign is an ab initio metabolic signature. Transcriptomic and metabolomic analysis of BC cells reveals that PETsign predicts enhanced glycolytic dependence and reduced reliance on fatty acid oxidation. Moreover, coamplification of PETsign genes occurs frequently in BC arguing for their causal role in pathogenesis. CXCL8 and EGFR signaling pathways feature strongly in PETsign, and their activation in BC cells causes a shift toward a glycolytic phenotype. Thus, PETsign serves as a molecular surrogate for FDG-PET that could inform clinical management strategies for BC patients.PMID:38757578 | DOI:10.1002/advs.202308255

Identification of Hyperuricemia Alleviating Peptides from Yellow Tuna <em>Thunnus albacares</em>

Fri, 17/05/2024 - 12:00
J Agric Food Chem. 2024 May 17. doi: 10.1021/acs.jafc.3c09901. Online ahead of print.ABSTRACTThe development of food-derived antihyperuricemic substances is important for alleviating hyperuricemia (HUA) and associated inflammation. Here, novel peptides fromThunnus albacares (TAP) with strong antihyperuricemic activity were prepared. TAP was prepared by alkaline protease (molecular weight <1000 Da), with an IC50 value of xanthine oxidase inhibitory activity of 2.498 mg/mL, and 5 mg/mL TAP could reduce uric acid (UA) by 33.62% in human kidney-2 (HK-2) cells (P < 0.01). Mice were fed a high-purine diet and injected with potassium oxonate to induce HUA. Oral administration of TAP (600 mg/kg/d) reduced serum UA significantly by 42.22% and increased urine UA by 79.02% (P < 0.01) via regulating urate transporters GLUT9, organic anion transporter 1, and ATP-binding cassette subfamily G2. Meantime, TAP exhibited hepatoprotective and nephroprotective effects, according to histological analysis. Besides, HUA mice treated with TAP showed anti-inflammatory activity by decreasing the levels of toll-like receptor 4, nuclear factors-κB p65, NLRP3, ASC, and Caspase-1 in the kidneys (P < 0.01). According to serum non-targeted metabolomics, 91 differential metabolites between the MC and TAP groups were identified, and purine metabolism was considered to be the main pathway for TAP alleviating HUA. In a word, TAP exhibited strong antihyperuricemic activity both in vitro and in vivo.PMID:38757561 | DOI:10.1021/acs.jafc.3c09901

Variation of terpene alkaloids in Daphniphyllum macropodum across plants and tissues

Fri, 17/05/2024 - 12:00
New Phytol. 2024 May 17. doi: 10.1111/nph.19814. Online ahead of print.ABSTRACTDaphniphyllum macropodum produces alkaloids that are structurally complex with polycyclic, stereochemically rich carbon skeletons. Understanding how these compounds are formed by the plant may enable exploration of their biological function and bioactivities. We employed multiple metabolomics techniques, including a workflow to annotate compounds in the absence of standards, to compare alkaloid content across plants and tissues. Different alkaloid structural types were found to have distinct distributions between genotypes, between tissues and within tissues. Alkaloid structural types also showed different isotope labelling enrichments that matched their biosynthetic relationships. The work suggests that mevalonate derived 30-carbon alkaloids are formed in the phloem region before their conversion to 22-carbon alkaloids which accumulate in the epidermis. This sets the stage for further investigation into the biosynthetic pathway.PMID:38757546 | DOI:10.1111/nph.19814

Mechanisms of epigallocatechin gallate (EGCG) in ameliorating hyperuricemia: insights into gut microbiota and intestinal function in a mouse model

Fri, 17/05/2024 - 12:00
Food Funct. 2024 May 17. doi: 10.1039/d4fo01606h. Online ahead of print.ABSTRACTEpigallocatechin gallate (EGCG), a prominent bioactive compound found in tea, offers numerous health benefits. Previous studies have highlighted its potential in mitigating hyperuricemia. In this study, hyperuricemic mice induced by potassium oxonate (PO) were treated with EGCG or the anti-hyperuricemia medication allopurinol (AP) to investigate the mechanisms underlying their anti-hyperuricemic effects. The results demonstrated that both EGCG and AP significantly reduced serum uric acid (UA) levels. Further analysis revealed that EGCG promoted the expression of UA secretion transporter genes (Oat1 and Oct1) while inhibiting the expression of UA reabsorption transporter genes (Urat1 and Glut9) in the kidney. By 16S rDNA sequencing, EGCG, but not AP, was found to alter the composition of the gut microbiota. Notably, EGCG induced significant changes in the relative abundance of specific bacteria such as Lactobacillus, Faecalibaculum, and Bifidobacterium, which displayed high correlations with serum UA levels and UA-related gene expression. Metabolomic analysis suggested that EGCG-induced modifications in bacterial metabolites might contribute to the alleviation of hyperuricemia. Transcriptomic analysis of the intestinal epithelium identifies 191 differentially expressed genes (DEGs) in EGCG-treated mice, including 8 purine-related genes. This study elucidates the anti-hyperuricemic mechanisms of EGCG, particularly its influence on the gut microbiota and gene expression in the intestinal epithelium.PMID:38757391 | DOI:10.1039/d4fo01606h

Heat-induced structural and chemical changes to a computationally designed miniprotein

Fri, 17/05/2024 - 12:00
Protein Sci. 2024 Jun;33(6):e4991. doi: 10.1002/pro.4991.ABSTRACTThe de novo design of miniprotein inhibitors has recently emerged as a new technology to create proteins that bind with high affinity to specific therapeutic targets. Their size, ease of expression, and apparent high stability makes them excellent candidates for a new class of protein drugs. However, beyond circular dichroism melts and hydrogen/deuterium exchange experiments, little is known about their dynamics, especially at the elevated temperatures they seemingly tolerate quite well. To address that and gain insight for future designs, we have focused on identifying unintended and previously overlooked heat-induced structural and chemical changes in a particularly stable model miniprotein, EHEE_rd2_0005. Nuclear magnetic resonance (NMR) studies suggest the presence of dynamics on multiple time and temperature scales. Transiently elevating the temperature results in spontaneous chemical deamidation visible in the NMR spectra, which we validate using both capillary electrophoresis and mass spectrometry (MS) experiments. High temperatures also result in greatly accelerated intrinsic rates of hydrogen exchange and signal loss in NMR heteronuclear single quantum coherence spectra from local unfolding. These losses are in excellent agreement with both room temperature hydrogen exchange experiments and hydrogen bond disruption in replica exchange molecular dynamics simulations. Our analysis reveals important principles for future miniprotein designs and the potential for high stability to result in long-lived alternate conformational states.PMID:38757381 | DOI:10.1002/pro.4991

Genetically predicted blood metabolites mediate the association between circulating immune cells and pancreatic cancer: A Mendelian randomization study

Fri, 17/05/2024 - 12:00
J Gene Med. 2024 May;26(5):e3691. doi: 10.1002/jgm.3691.ABSTRACTBACKGROUND: Pancreatic cancer is characterized by metabolic dysregulation and unique immunological profiles. Nevertheless, the comprehensive understanding of immune and metabolic dysregulation of pancreatic cancer remains unclear. In the present study, we aimed to investigate the causal relationship of circulating immune cells and pancreatic cancer and identify the blood metabolites as potential mediators.METHODS: The exposure and outcome genome-wide association studies (GWAS) data used in the present study were obtained from the GWAS open-access database (https://gwas.mrcieu.ac.uk). The study used 731 circulating immune cell features, 1400 types of blood metabolites and pancreatic cancer from GWAS. We then performed bidirectional Mendelian randomization (MR) analyses to explore the causal relationships between the circulating immune cells and pancreatic cancer, and two-step MR to discover potential mediating blood metabolites in this process. All statistical analyses were performed in R software. The STROBE-MR (i.e. Strengthening the Reporting of Observational Studies in Epidemiology using Mendelian Randomization) checklist for the reporting of MR studies was also used.RESULTS: MR analysis identified seven types of circulating immune cells causally associated with pancreatic cancer. Furthermore, there was no strong evidence that genetically predicted pancreatic cancer had an effect on these seven types of circulating immune cells. Further two-step MR analysis found 10 types of blood metabolites were causally associated with pancreatic cancer and the associations between circulating CD39+CD8+ T cells and pancreatic cancer were mediated by blood orotates with proportions of 5.18% (p = 0.016).CONCLUSIONS: The present study provides evidence supporting the causal relationships between various circulating immune cells, especially CD39+CD8+ T cells, and pancreatic cancer, with a potential effect mediated by blood orotates. Further research is needed on additional risk factors as potential mediators and establish a comprehensive immunity-metabolism network in pancreatic cancer.PMID:38757222 | DOI:10.1002/jgm.3691

Integrated HS-GC-IMS and UPLC-Q-Orbitrap HRMS-based metabolomics revealed the characteristics and differential volatile and nonvolatile metabolites of different citrus peels

Fri, 17/05/2024 - 12:00
Curr Res Food Sci. 2024 May 1;8:100755. doi: 10.1016/j.crfs.2024.100755. eCollection 2024.ABSTRACTCitrus is an important genus in the Rutaceae family, and citrus peels can be used in both food and herbal medicine. However, the bulk of citrus peels are discarded as waste by the fruit processing industry, causing environmental pollution. This study aimed to provide guidelines for the rational and effective use of citrus peels by elucidating the volatile and nonvolatile metabolites within them using metabolomics based on headspace-gas chromatography-ion mobility spectrometry and ultra-high-performance liquid chromatography-Q-Orbitrap high-resolution mass spectrometry. In addition, the antioxidant activities of the citrus peels were evaluated using DPPH radical scavenging, ABTS radical scavenging, and ferric reducing antioxidant power. In total, 103 volatile and 53 nonvolatile metabolites were identified and characterized. Alcohols, aldehydes, and terpenes constituted 87.36% of the volatile metabolites, while flavonoids and carboxylic acids accounted for 85.46% of the nonvolatile metabolites. Furthermore, (Z)-2-penten-1-ol, L-pipecolinic acid, and limonin were identified as characteristic components of Citrus reticulata Blanco cv. Ponkan (PK), C. reticulata 'Unshiu' (CLU), and C. reticulata 'Wo Gan' (WG), respectively. Principal component analysis and partial least squares discriminant analysis indicated that C. reticulata Blanco 'Chun Jian' (CJ), PK, CLU, and C. reticulata 'Dahongpao' (DHP) were clustered together. DHP is a traditional Chinese medicine documented in the Chinese Pharmacopoeia, suggesting that the chemical compositions of CJ, PK, and CLU may also have medicinal values similar to those of DHP. Moreover, DHP, PK, C. reticulata 'Ai Yuan 38'(AY38), CJ, C. reticulata 'Gan Ping'(GP), and C. reticulata 'Qing Jian'(QJ) displayed better antioxidant activities, recommending their use as additives in cosmetics and food. Correlation analysis suggested that some polyphenols including tangeritin, nobiletin, skullcapflavone II, genistein, caffeic acid, and isokaempferide were potential antioxidant compounds in citrus peel. The results of this study deepen our understanding of the differences in metabolites and antioxidant activities of different citrus peel varieties and ultimately provide guidance for the full and rational use of citrus peels.PMID:38756737 | PMC:PMC11096708 | DOI:10.1016/j.crfs.2024.100755

Metabolomics for early pancreatic cancer detection in plasma samples from a Swedish prospective population-based biobank

Fri, 17/05/2024 - 12:00
J Gastrointest Oncol. 2024 Apr 30;15(2):755-767. doi: 10.21037/jgo-23-930. Epub 2024 Apr 28.ABSTRACTBACKGROUND: Pancreatic ductal adenocarcinoma (pancreatic cancer) is often detected at late stages resulting in poor overall survival. To improve survival, more patients need to be diagnosed early when curative surgery is feasible. We aimed to identify circulating metabolites that could be used as early pancreatic cancer biomarkers.METHODS: We performed metabolomics by liquid and gas chromatography-mass spectrometry in plasma samples from 82 future pancreatic cancer patients and 82 matched healthy controls within the Northern Sweden Health and Disease Study (NSHDS). Logistic regression was used to assess univariate associations between metabolites and pancreatic cancer risk. Least absolute shrinkage and selection operator (LASSO) logistic regression was used to design a metabolite-based risk score. We used receiver operating characteristic (ROC) analyses to assess the discriminative performance of the metabolite-based risk score.RESULTS: Among twelve risk-associated metabolites with a nominal P value <0.05, we defined a risk score of three metabolites [indoleacetate, 3-hydroxydecanoate (10:0-OH), and retention index (RI): 2,745.4] using LASSO. A logistic regression model containing these three metabolites, age, sex, body mass index (BMI), smoking status, sample date, fasting status, and carbohydrate antigen 19-9 (CA 19-9) yielded an internal area under curve (AUC) of 0.784 [95% confidence interval (CI): 0.714-0.854] compared to 0.681 (95% CI: 0.597-0.764) for a model without these metabolites (P value =0.007). Seventeen metabolites were significantly associated with pancreatic cancer survival [false discovery rate (FDR) <0.1].CONCLUSIONS: Indoleacetate, 3-hydroxydecanoate (10:0-OH), and RI: 2,745.4 were identified as the top candidate biomarkers for early detection. However, continued efforts are warranted to determine the usefulness of these metabolites as early pancreatic cancer biomarkers.PMID:38756646 | PMC:PMC11094504 | DOI:10.21037/jgo-23-930

Unveiling the gut microbiota and metabolite profiles in guinea pigs with form deprivation myopia through 16S rRNA gene sequencing and untargeted metabolomics

Fri, 17/05/2024 - 12:00
Heliyon. 2024 May 6;10(9):e30491. doi: 10.1016/j.heliyon.2024.e30491. eCollection 2024 May 15.ABSTRACTAIM: The aim of this study was to confirm the presence of the form deprivation myopia (FDM) guinea pig eye-gut axis and investigate the relationship between serum vasoactive intestinal peptide (VIP), lipopolysaccharides (LPS), specific gut microbiota and their metabolites.METHOD: 20 specific-pathogen-free (SPF) guinea pigs were divided into the FDM and the control(Con) group. Following model induction, serum levels of VIP and LPS were quantified. A combination of 16S ribosomal ribosomal Ribonucleic Acid (rRNA) gene sequencing, non-targeted metabolomics and bioinformatics analysis were employed to identify disparities in gut microbiota and metabolites between the two groups of guinea pigs.RESULT: Compared to the control group, FDM guinea pigs exhibited a significant trend towards myopia, along with significantly elevated concentrations of LPS and VIP (p < 0.0001). Furthermore, Ruminococcus_albus emerged as the predominant bacterial community enriched in FDM (p < 0.05), and demonstrated positive correlations with 10 metabolites, including l-Glutamic acid, Additionally, Ruminococcus_albus exhibited positive correlations with VIP and LPS levels (p < 0.05).CONCLUSION: The findings suggest that the Ruminococcus_Albus and glutamate metabolic pathways play a significant role in myopia development, leading to concurrent alterations in serum VIP and LPS levels in FDM guinea pigs. This underscores the potential of specific gut microbiota and their metabolites as pivotal biomarkers involved in the pathogenesis of myopia.PMID:38756593 | PMC:PMC11096930 | DOI:10.1016/j.heliyon.2024.e30491

Is aromatic plants environmental health engineering (APEHE) a leverage point of the earth system?

Fri, 17/05/2024 - 12:00
Heliyon. 2024 May 3;10(9):e30322. doi: 10.1016/j.heliyon.2024.e30322. eCollection 2024 May 15.ABSTRACTIt is important to note that every ecological niche in an ecosystem is significant. This study aims to assess the importance of medicinal and aromatic plants (MAPs) in the ecosystem from multiple perspectives. A primary model of Aromatic Plants Environmental Health Engineering (APEHE) has been designed and constructed. The APEHE system was used to collect aerosol compounds, and it was experimentally verified that these compounds have the potential to impact human health by binding to AKT1 as the primary target, and MMP9 and TLR4 as secondary targets. These compounds may indirectly affect human immunity by reversing drug resistance in drug-resistant bacteria in the nasal cavity. This is mainly achieved through combined mutations in sdhA, scrA, and PEP. Our findings are based on Network pharmacology and molecular binding, drug-resistance rescue experiments, as well as combined transcriptomics and metabolomics experiments. It is suggested that APEHE may have direct or indirect effects on human health. We demonstrate APEHE's numerous potential benefits, such as attenuation and elimination of airborne microorganisms in the environment, enhancing carbon and nitrogen storage in terrestrial ecosystems, promoting the formation of low-level clouds and strengthening the virtuous cycle of Earth's ecosystems. APEHE also supports the development of transdisciplinary technologies, including terpene energy production. It facilitates the creation of a sustainable circular economy and provides additional economic advantages through urban optimisation, as well as fresh insights into areas such as the habitability of other planets. APEHE has the potential to serve as a leverage point for the Earth system. We have created a new research direction.PMID:38756557 | PMC:PMC11096952 | DOI:10.1016/j.heliyon.2024.e30322

Pages