Integrative Molecular Phenotyping
INTEGRATIVE MOLECULAR
PHENOTYPING
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY
DEPARTMENT OF MEDICAL
BIOCHEMISTRY AND BIOPHYSICS
WHEELOCK LABORATORY

PubMed

PubMed
NCBI: db=pubmed; Term=metabolomics
Updated: 34 min 52 sec ago

LC-MS based plasma metabolomics study of the intervention effect of different polar parts of Hawthorn on gastrointestinal motility disorder rats.

Fri, 22/01/2021 - 14:35
Related Articles LC-MS based plasma metabolomics study of the intervention effect of different polar parts of Hawthorn on gastrointestinal motility disorder rats. Biomed Chromatogr. 2021 Jan 21;:e5076 Authors: Wang K, Luo L, Xu X, Chen X, He Q, Zou Z, Wang S, Liang S Abstract Dyspepsia, one of the most prevalent diseases of the digestive tract that impacts the quality of patient life, is mainly caused by gastrointestinal motility disorder. Hawthorn is a commonly-used traditional Chinese medicine (TCM) for treating dyspepsia, has been proven to improve gastrointestinal motility. Herein, a rat model of gastrointestinal motility disorder was established by subcutaneous injecting with atropine. The modeled rats were treated with 4 polar parts (T1-4 in descending polarity, corresponding to water, n-butanol, ethyl acetate and petroleum ether extracts, respectively) of hawthorn. Through metabolomics analysis, a total of 20 significantly metabolites were identified with significant changes in their abundance levels and these metabolites were related to many metabolic pathways such as amino acid metabolism and primary bile acid biosynthesis. The results showed that T3 had the best therapeutic effect of promoting gastrointestinal motility, other parts with no obvious therapeutic effect, demonstrating that the effective components of hawthorn may be compounds of medium polarity. T3 might achieve good therapeutic effects due to the gastrointestinal motility promotion activity, and by rectifying the disturbed metabolic pathways in gastrointestinal motility disorder model. PMID: 33476053 [PubMed - as supplied by publisher]

Lipidomic Analysis of Postmortem Prefrontal Cortex Phospholipids Reveals Changes in Choline Plasmalogen Containing Docosahexaenoic Acid and Stearic Acid Between Cases With and Without Alzheimer's Disease.

Fri, 22/01/2021 - 14:35
Related Articles Lipidomic Analysis of Postmortem Prefrontal Cortex Phospholipids Reveals Changes in Choline Plasmalogen Containing Docosahexaenoic Acid and Stearic Acid Between Cases With and Without Alzheimer's Disease. Neuromolecular Med. 2021 Jan 21;: Authors: Otoki Y, Kato S, Nakagawa K, Harvey DJ, Jin LW, Dugger BN, Taha AY Abstract Alzheimer's disease (AD) is a progressive and incurable brain disorder that has been associated with structural changes in brain phospholipids (PLs), including diacyl species and ether-linked PLs known as plasmalogens. Most studies have characterized total changes in brain PL pools (e.g., choline plasmalogens), particularly in prefrontal cortex, but detailed and quantitative information on the molecular PL species impacted by the disease is limited. In this study, we used a comprehensive mass-spectrometry method to quantify diacyl and plasmalogen species, alkyl synthetic precursors of plasmalogens, and lysophospholipid degradation products of diacyl and plasmalogen PLs, in postmortem samples of prefrontal cortex from 21 AD patients and 20 age-matched controls. Total PLs were also quantified with gas-chromatography analysis of bound fatty acids following thin layer chromatography isolation. There was a significant 27% reduction in the concentration (nmol/g wet weight) of choline plasmalogen containing stearic acid (alkenyl group) and docosahexaenoic acid in AD compared to controls. Stearic acid concentration in total PLs was reduced by 26%. Our findings suggest specific changes in PLs containing stearic acid and docosahexaenoic acid in AD prefrontal cortex, highlighting structural and turnover PL pathways that could be targeted. PMID: 33475971 [PubMed - as supplied by publisher]

Global metabolomic analysis of blood from mice infected with Brucella abortus.

Fri, 22/01/2021 - 14:35
Related Articles Global metabolomic analysis of blood from mice infected with Brucella abortus. J Vet Med Sci. 2021 Jan 19;: Authors: Vu SH, Kim B, Reyes AWB, Huy TXN, Lee JH, Kim S, Kim HJ Abstract To better understanding Brucella abortus infection, serum metabolites of B. abortus -infected and -uninfected mice were analyzed and twenty-one metabolites were tentatively identified at 3 and 14 days post-infection (d.p.i.). Level of most lysophosphatidylcholines (LPCs) was found to increase in infected mice at 3 d.p.i., while it was decreased at 14 d.p.i. as compared to uninfected mice. In contrast, acylcarnitines were initially reduced at 3 d.p.i then elevated after two-weeks of infection, while hydroxysanthine was increased at 14 d.p.i. in infected mice. Our findings suggest that the significant changes in LPCs and other identified metabolites may serve as potential biomarkers in acute phase of B. abortus infection. PMID: 33473061 [PubMed - as supplied by publisher]

The complexities of the diet-microbiome relationship: advances and perspectives.

Fri, 22/01/2021 - 14:35
Related Articles The complexities of the diet-microbiome relationship: advances and perspectives. Genome Med. 2021 Jan 20;13(1):10 Authors: Leeming ER, Louca P, Gibson R, Menni C, Spector TD, Le Roy CI Abstract Personalised dietary modulation of the gut microbiota may be key to disease management. Current investigations provide a broad understanding of the impact of diet on the composition and activity of the gut microbiota, yet detailed knowledge in applying diet as an actionable tool remains limited. Further to the relative novelty of the field, approaches are yet to be standardised and extremely heterogeneous research outcomes have ensued. This may be related to confounders associated with complexities in capturing an accurate representation of both diet and the gut microbiota. This review discusses the intricacies and current methodologies of diet-microbial relations, the implications and limitations of these investigative approaches, and future considerations that may assist in accelerating applications. New investigations should consider improved collection of dietary data, further characterisation of mechanistic interactions, and an increased focus on -omic technologies such as metabolomics to describe the bacterial and metabolic activity of food degradation, together with its crosstalk with the host. Furthermore, clinical evidence with health outcomes is required before therapeutic dietary strategies for microbial amelioration can be made. The potential to reach detailed understanding of diet-microbiota relations may depend on re-evaluation, progression, and unification of research methodologies, which consider the complexities of these interactions. PMID: 33472701 [PubMed - in process]

Exploring plant metabolic genomics: chemical diversity, metabolic complexity in the biosynthesis and transport of specialized metabolites with the tea plant as a model.

Fri, 22/01/2021 - 14:35
Related Articles Exploring plant metabolic genomics: chemical diversity, metabolic complexity in the biosynthesis and transport of specialized metabolites with the tea plant as a model. Crit Rev Biotechnol. 2020 Aug;40(5):667-688 Authors: Zhao J, Li P, Xia T, Wan X Abstract The diversity and complexity of secondary metabolites in tea plants contribute substantially to the popularity of tea, by determining tea flavors and their numerous health benefits. The most significant characteristics of tea plants are that they concentrate the complex plant secondary metabolites into one leaf: flavonoids, alkaloids, theanine, volatiles, and saponins. Many fundamental questions regarding tea plant secondary metabolism remain unanswered. This includes how tea plants accumulate high levels of monomeric galloylated catechins, unlike the polymerized flavan-3-ols in most other plants, as well as how they are evolved to selectively synthesize theanine and caffeine, and how tea plants properly transport and store these cytotoxic products and then reuse them in defense. Tea plants coordinate many metabolic pathways that simultaneously take place in young tea leaves in response to both developmental and environmental cues. With the available genome sequences of tea plants and high-throughput metabolomic tools as great platforms, it is of particular interest to launch metabolic genomics studies using tea plants as a model system. Plant metabolic genomics are to investigate all aspects of plant secondary metabolism at the genetic, genome, and molecular levels. This includes plant domestication and adaptation, divergence and convergence of secondary metaboloic pathways. The biosynthesis, transport, storage, and transcriptional regulation mechanisms of all metabolites are of core interest in the plant as a whole. This review highlights relevant contexts of metabolic genomics, outstanding questions, and strategies for answering them, with aim to guide future research for genetic improvement of nutrition quality for healthier plant foods. PMID: 32321331 [PubMed - indexed for MEDLINE]

Global, Regional, and National Cancer Incidence, Mortality, Years of Life Lost, Years Lived With Disability, and Disability-Adjusted Life-Years for 29 Cancer Groups, 1990 to 2017: A Systematic Analysis for the Global Burden of Disease Study.

Fri, 22/01/2021 - 14:35
Related Articles Global, Regional, and National Cancer Incidence, Mortality, Years of Life Lost, Years Lived With Disability, and Disability-Adjusted Life-Years for 29 Cancer Groups, 1990 to 2017: A Systematic Analysis for the Global Burden of Disease Study. JAMA Oncol. 2019 12 01;5(12):1749-1768 Authors: Global Burden of Disease Cancer Collaboration, Fitzmaurice C, Abate D, Abbasi N, Abbastabar H, Abd-Allah F, Abdel-Rahman O, Abdelalim A, Abdoli A, Abdollahpour I, Abdulle ASM, Abebe ND, Abraha HN, Abu-Raddad LJ, Abualhasan A, Adedeji IA, Advani SM, Afarideh M, Afshari M, Aghaali M, Agius D, Agrawal S, Ahmadi A, Ahmadian E, Ahmadpour E, Ahmed MB, Akbari ME, Akinyemiju T, Al-Aly Z, AlAbdulKader AM, Alahdab F, Alam T, Alamene GM, Alemnew BTT, Alene KA, Alinia C, Alipour V, Aljunid SM, Bakeshei FA, Almadi MAH, Almasi-Hashiani A, Alsharif U, Alsowaidi S, Alvis-Guzman N, Amini E, Amini S, Amoako YA, Anbari Z, Anber NH, Andrei CL, Anjomshoa M, Ansari F, Ansariadi A, Appiah SCY, Arab-Zozani M, Arabloo J, Arefi Z, Aremu O, Areri HA, Artaman A, Asayesh H, Asfaw ET, Ashagre AF, Assadi R, Ataeinia B, Atalay HT, Ataro Z, Atique S, Ausloos M, Avila-Burgos L, Avokpaho EFGA, Awasthi A, Awoke N, Ayala Quintanilla BP, Ayanore MA, Ayele HT, Babaee E, Bacha U, Badawi A, Bagherzadeh M, Bagli E, Balakrishnan S, Balouchi A, Bärnighausen TW, Battista RJ, Behzadifar M, Behzadifar M, Bekele BB, Belay YB, Belayneh YM, Berfield KKS, Berhane A, Bernabe E, Beuran M, Bhakta N, Bhattacharyya K, Biadgo B, Bijani A, Bin Sayeed MS, Birungi C, Bisignano C, Bitew H, Bjørge T, Bleyer A, Bogale KA, Bojia HA, Borzì AM, Bosetti C, Bou-Orm IR, Brenner H, Brewer JD, Briko AN, Briko NI, Bustamante-Teixeira MT, Butt ZA, Carreras G, Carrero JJ, Carvalho F, Castro C, Castro F, Catalá-López F, Cerin E, Chaiah Y, Chanie WF, Chattu VK, Chaturvedi P, Chauhan NS, Chehrazi M, Chiang PP, Chichiabellu TY, Chido-Amajuoyi OG, Chimed-Ochir O, Choi JJ, Christopher DJ, Chu DT, Constantin MM, Costa VM, Crocetti E, Crowe CS, Curado MP, Dahlawi SMA, Damiani G, Darwish AH, Daryani A, das Neves J, Demeke FM, Demis AB, Demissie BW, Demoz GT, Denova-Gutiérrez E, Derakhshani A, Deribe KS, Desai R, Desalegn BB, Desta M, Dey S, Dharmaratne SD, Dhimal M, Diaz D, Dinberu MTT, Djalalinia S, Doku DT, Drake TM, Dubey M, Dubljanin E, Duken EE, Ebrahimi H, Effiong A, Eftekhari A, El Sayed I, Zaki MES, El-Jaafary SI, El-Khatib Z, Elemineh DA, Elkout H, Ellenbogen RG, Elsharkawy A, Emamian MH, Endalew DA, Endries AY, Eshrati B, Fadhil I, Fallah Omrani V, Faramarzi M, Farhangi MA, Farioli A, Farzadfar F, Fentahun N, Fernandes E, Feyissa GT, Filip I, Fischer F, Fisher JL, Force LM, Foroutan M, Freitas M, Fukumoto T, Futran ND, Gallus S, Gankpe FG, Gayesa RT, Gebrehiwot TT, Gebremeskel GG, Gedefaw GA, Gelaw BK, Geta B, Getachew S, Gezae KE, Ghafourifard M, Ghajar A, Ghashghaee A, Gholamian A, Gill PS, Ginindza TTG, Girmay A, Gizaw M, Gomez RS, Gopalani SV, Gorini G, Goulart BNG, Grada A, Ribeiro Guerra M, Guimaraes ALS, Gupta PC, Gupta R, Hadkhale K, Haj-Mirzaian A, Haj-Mirzaian A, Hamadeh RR, Hamidi S, Hanfore LK, Haro JM, Hasankhani M, Hasanzadeh A, Hassen HY, Hay RJ, Hay SI, Henok A, Henry NJ, Herteliu C, Hidru HD, Hoang CL, Hole MK, Hoogar P, Horita N, Hosgood HD, Hosseini M, Hosseinzadeh M, Hostiuc M, Hostiuc S, Househ M, Hussen MM, Ileanu B, Ilic MD, Innos K, Irvani SSN, Iseh KR, Islam SMS, Islami F, Jafari Balalami N, Jafarinia M, Jahangiry L, Jahani MA, Jahanmehr N, Jakovljevic M, James SL, Javanbakht M, Jayaraman S, Jee SH, Jenabi E, Jha RP, Jonas JB, Jonnagaddala J, Joo T, Jungari SB, Jürisson M, Kabir A, Kamangar F, Karch A, Karimi N, Karimian A, Kasaeian A, Kasahun GG, Kassa B, Kassa TD, Kassaw MW, Kaul A, Keiyoro PN, Kelbore AG, Kerbo AA, Khader YS, Khalilarjmandi M, Khan EA, Khan G, Khang YH, Khatab K, Khater A, Khayamzadeh M, Khazaee-Pool M, Khazaei S, Khoja AT, Khosravi MH, Khubchandani J, Kianipour N, Kim D, Kim YJ, Kisa A, Kisa S, Kissimova-Skarbek K, Komaki H, Koyanagi A, Krohn KJ, Bicer BK, Kugbey N, Kumar V, Kuupiel D, La Vecchia C, Lad DP, Lake EA, Lakew AM, Lal DK, Lami FH, Lan Q, Lasrado S, Lauriola P, Lazarus JV, Leigh J, Leshargie CT, Liao Y, Limenih MA, Listl S, Lopez AD, Lopukhov PD, Lunevicius R, Madadin M, Magdeldin S, El Razek HMA, Majeed A, Maleki A, Malekzadeh R, Manafi A, Manafi N, Manamo WA, Mansourian M, Mansournia MA, Mantovani LG, Maroufizadeh S, Martini SMS, Mashamba-Thompson TP, Massenburg BB, Maswabi MT, Mathur MR, McAlinden C, McKee M, Meheretu HAA, Mehrotra R, Mehta V, Meier T, Melaku YA, Meles GG, Meles HG, Melese A, Melku M, Memiah PTN, Mendoza W, Menezes RG, Merat S, Meretoja TJ, Mestrovic T, Miazgowski B, Miazgowski T, Mihretie KMM, Miller TR, Mills EJ, Mir SM, Mirzaei H, Mirzaei HR, Mishra R, Moazen B, Mohammad DK, Mohammad KA, Mohammad Y, Darwesh AM, Mohammadbeigi A, Mohammadi H, Mohammadi M, Mohammadian M, Mohammadian-Hafshejani A, Mohammadoo-Khorasani M, Mohammadpourhodki R, Mohammed AS, Mohammed JA, Mohammed S, Mohebi F, Mokdad AH, Monasta L, Moodley Y, Moosazadeh M, Moossavi M, Moradi G, Moradi-Joo M, Moradi-Lakeh M, Moradpour F, Morawska L, Morgado-da-Costa J, Morisaki N, Morrison SD, Mosapour A, Mousavi SM, Muche AA, Muhammed OSS, Musa J, Nabhan AF, Naderi M, Nagarajan AJ, Nagel G, Nahvijou A, Naik G, Najafi F, Naldi L, Nam HS, Nasiri N, Nazari J, Negoi I, Neupane S, Newcomb PA, Nggada HA, Ngunjiri JW, Nguyen CT, Nikniaz L, Ningrum DNA, Nirayo YL, Nixon MR, Nnaji CA, Nojomi M, Nosratnejad S, Shiadeh MN, Obsa MS, Ofori-Asenso R, Ogbo FA, Oh IH, Olagunju AT, Olagunju TO, Oluwasanu MM, Omonisi AE, Onwujekwe OE, Oommen AM, Oren E, Ortega-Altamirano DDV, Ota E, Otstavnov SS, Owolabi MO, P A M, Padubidri JR, Pakhale S, Pakpour AH, Pana A, Park EK, Parsian H, Pashaei T, Patel S, Patil ST, Pennini A, Pereira DM, Piccinelli C, Pillay JD, Pirestani M, Pishgar F, Postma MJ, Pourjafar H, Pourmalek F, Pourshams A, Prakash S, Prasad N, Qorbani M, Rabiee M, Rabiee N, Radfar A, Rafiei A, Rahim F, Rahimi M, Rahman MA, Rajati F, Rana SM, Raoofi S, Rath GK, Rawaf DL, Rawaf S, Reiner RC, Renzaho AMN, Rezaei N, Rezapour A, Ribeiro AI, Ribeiro D, Ronfani L, Roro EM, Roshandel G, Rostami A, Saad RS, Sabbagh P, Sabour S, Saddik B, Safiri S, Sahebkar A, Salahshoor MR, Salehi F, Salem H, Salem MR, Salimzadeh H, Salomon JA, Samy AM, Sanabria J, Santric Milicevic MM, Sartorius B, Sarveazad A, Sathian B, Satpathy M, Savic M, Sawhney M, Sayyah M, Schneider IJC, Schöttker B, Sekerija M, Sepanlou SG, Sepehrimanesh M, Seyedmousavi S, Shaahmadi F, Shabaninejad H, Shahbaz M, Shaikh MA, Shamshirian A, Shamsizadeh M, Sharafi H, Sharafi Z, Sharif M, Sharifi A, Sharifi H, Sharma R, Sheikh A, Shirkoohi R, Shukla SR, Si S, Siabani S, Silva DAS, Silveira DGA, Singh A, Singh JA, Sisay S, Sitas F, Sobngwi E, Soofi M, Soriano JB, Stathopoulou V, Sufiyan MB, Tabarés-Seisdedos R, Tabuchi T, Takahashi K, Tamtaji OR, Tarawneh MR, Tassew SG, Taymoori P, Tehrani-Banihashemi A, Temsah MH, Temsah O, Tesfay BE, Tesfay FH, Teshale MY, Tessema GA, Thapa S, Tlaye KG, Topor-Madry R, Tovani-Palone MR, Traini E, Tran BX, Tran KB, Tsadik AG, Ullah I, Uthman OA, Vacante M, Vaezi M, Varona Pérez P, Veisani Y, Vidale S, Violante FS, Vlassov V, Vollset SE, Vos T, Vosoughi K, Vu GT, Vujcic IS, Wabinga H, Wachamo TM, Wagnew FS, Waheed Y, Weldegebreal F, Weldesamuel GT, Wijeratne T, Wondafrash DZ, Wonde TE, Wondmieneh AB, Workie HM, Yadav R, Yadegar A, Yadollahpour A, Yaseri M, Yazdi-Feyzabadi V, Yeshaneh A, Yimam MA, Yimer EM, Yisma E, Yonemoto N, Younis MZ, Yousefi B, Yousefifard M, Yu C, Zabeh E, Zadnik V, Moghadam TZ, Zaidi Z, Zamani M, Zandian H, Zangeneh A, Zaki L, Zendehdel K, Zenebe ZM, Zewale TA, Ziapour A, Zodpey S, Murray CJL Abstract Importance: Cancer and other noncommunicable diseases (NCDs) are now widely recognized as a threat to global development. The latest United Nations high-level meeting on NCDs reaffirmed this observation and also highlighted the slow progress in meeting the 2011 Political Declaration on the Prevention and Control of Noncommunicable Diseases and the third Sustainable Development Goal. Lack of situational analyses, priority setting, and budgeting have been identified as major obstacles in achieving these goals. All of these have in common that they require information on the local cancer epidemiology. The Global Burden of Disease (GBD) study is uniquely poised to provide these crucial data. Objective: To describe cancer burden for 29 cancer groups in 195 countries from 1990 through 2017 to provide data needed for cancer control planning. Evidence Review: We used the GBD study estimation methods to describe cancer incidence, mortality, years lived with disability, years of life lost, and disability-adjusted life-years (DALYs). Results are presented at the national level as well as by Socio-demographic Index (SDI), a composite indicator of income, educational attainment, and total fertility rate. We also analyzed the influence of the epidemiological vs the demographic transition on cancer incidence. Findings: In 2017, there were 24.5 million incident cancer cases worldwide (16.8 million without nonmelanoma skin cancer [NMSC]) and 9.6 million cancer deaths. The majority of cancer DALYs came from years of life lost (97%), and only 3% came from years lived with disability. The odds of developing cancer were the lowest in the low SDI quintile (1 in 7) and the highest in the high SDI quintile (1 in 2) for both sexes. In 2017, the most common incident cancers in men were NMSC (4.3 million incident cases); tracheal, bronchus, and lung (TBL) cancer (1.5 million incident cases); and prostate cancer (1.3 million incident cases). The most common causes of cancer deaths and DALYs for men were TBL cancer (1.3 million deaths and 28.4 million DALYs), liver cancer (572 000 deaths and 15.2 million DALYs), and stomach cancer (542 000 deaths and 12.2 million DALYs). For women in 2017, the most common incident cancers were NMSC (3.3 million incident cases), breast cancer (1.9 million incident cases), and colorectal cancer (819 000 incident cases). The leading causes of cancer deaths and DALYs for women were breast cancer (601 000 deaths and 17.4 million DALYs), TBL cancer (596 000 deaths and 12.6 million DALYs), and colorectal cancer (414 000 deaths and 8.3 million DALYs). Conclusions and Relevance: The national epidemiological profiles of cancer burden in the GBD study show large heterogeneities, which are a reflection of different exposures to risk factors, economic settings, lifestyles, and access to care and screening. The GBD study can be used by policy makers and other stakeholders to develop and improve national and local cancer control in order to achieve the global targets and improve equity in cancer care. PMID: 31560378 [PubMed - indexed for MEDLINE]

metabolomics; +26 new citations

Thu, 21/01/2021 - 14:28
26 new pubmed citations were retrieved for your search. Click on the search hyperlink below to display the complete search results: metabolomics These pubmed results were generated on 2021/01/21PubMed comprises more than millions of citations for biomedical literature from MEDLINE, life science journals, and online books. Citations may include links to full-text content from PubMed Central and publisher web sites.

metabolomics; +34 new citations

Wed, 20/01/2021 - 14:21
34 new pubmed citations were retrieved for your search. Click on the search hyperlink below to display the complete search results: metabolomics These pubmed results were generated on 2021/01/20PubMed comprises more than millions of citations for biomedical literature from MEDLINE, life science journals, and online books. Citations may include links to full-text content from PubMed Central and publisher web sites.

metabolomics; +28 new citations

Wed, 20/01/2021 - 11:18
28 new pubmed citations were retrieved for your search. Click on the search hyperlink below to display the complete search results: metabolomics These pubmed results were generated on 2021/01/20PubMed comprises more than millions of citations for biomedical literature from MEDLINE, life science journals, and online books. Citations may include links to full-text content from PubMed Central and publisher web sites.

metabolomics; +20 new citations

Sun, 17/01/2021 - 13:59
20 new pubmed citations were retrieved for your search. Click on the search hyperlink below to display the complete search results: metabolomics These pubmed results were generated on 2021/01/17PubMed comprises more than millions of citations for biomedical literature from MEDLINE, life science journals, and online books. Citations may include links to full-text content from PubMed Central and publisher web sites.

metabolomics; +21 new citations

Sat, 16/01/2021 - 13:55
21 new pubmed citations were retrieved for your search. Click on the search hyperlink below to display the complete search results: metabolomics These pubmed results were generated on 2021/01/16PubMed comprises more than millions of citations for biomedical literature from MEDLINE, life science journals, and online books. Citations may include links to full-text content from PubMed Central and publisher web sites.

metabolomics; +20 new citations

Fri, 15/01/2021 - 13:48
20 new pubmed citations were retrieved for your search. Click on the search hyperlink below to display the complete search results: metabolomics These pubmed results were generated on 2021/01/15PubMed comprises more than millions of citations for biomedical literature from MEDLINE, life science journals, and online books. Citations may include links to full-text content from PubMed Central and publisher web sites.

metabolomics; +36 new citations

Thu, 14/01/2021 - 13:43
36 new pubmed citations were retrieved for your search. Click on the search hyperlink below to display the complete search results: metabolomics These pubmed results were generated on 2021/01/14PubMed comprises more than millions of citations for biomedical literature from MEDLINE, life science journals, and online books. Citations may include links to full-text content from PubMed Central and publisher web sites.

metabolomics; +34 new citations

Wed, 13/01/2021 - 13:36
34 new pubmed citations were retrieved for your search. Click on the search hyperlink below to display the complete search results: metabolomics These pubmed results were generated on 2021/01/13PubMed comprises more than millions of citations for biomedical literature from MEDLINE, life science journals, and online books. Citations may include links to full-text content from PubMed Central and publisher web sites.

metabolomics; +29 new citations

Tue, 12/01/2021 - 13:26
29 new pubmed citations were retrieved for your search. Click on the search hyperlink below to display the complete search results: metabolomics These pubmed results were generated on 2021/01/12PubMed comprises more than millions of citations for biomedical literature from MEDLINE, life science journals, and online books. Citations may include links to full-text content from PubMed Central and publisher web sites.

Is SGSH heterozygosity a risk factor for early-onset neurodegenerative disease?

Mon, 11/01/2021 - 13:18
Related Articles Is SGSH heterozygosity a risk factor for early-onset neurodegenerative disease? J Inherit Metab Dis. 2021 Jan 09;: Authors: Douglass ML, Beard H, Shoubridge A, Nazri N, King B, Trim PJ, Duplock SK, Snel MF, Hopwood JJ, Hemsley KM Abstract Lysosomal dysfunction may be an important factor in the pathogenesis of neurodegenerative disorders such as Parkinson's disease (PD). Heterozygous mutations in the gene encoding the lysosomal enzyme glucocerebrosidase (GBA1) have been found in PD patients, and some but not all mutations in other lysosomal enzyme genes for example, NPC1 and MCOLN1 have been associated with PD. We have examined the behaviour and brain structure of mice carrying a D31N mutation in the sulphamidase (Sgsh) gene which encodes a lysosomal sulphatase. Female heterozygotes and wildtype mice aged 12-, 15-, 18- and 21-months of age underwent motor phenotyping and the brain was comprehensively evaluated for disease-associated lesions. Heterozygous mice exhibited impaired performance in the negative geotaxis test when compared with wildtype mice. Whilst the brain of Sgsh heterozygotes aged up to 21-months did not exhibit any of the gross features of PD, Alzheimer's disease or the neurodegenerative lysosomal storage disorders for example, loss of striatal dopamine, reduced GBA activity, α-synuclein-positive inclusions, perturbation of lipid synthesis, or cerebellar Purkinje cell drop-out, we noted discrete structural aberrations in the dendritic tree of cortical pyramidal neurons in 21-month old animals. The overt disease lesions and resultant phenotypic changes previously described in individuals with heterozygous mutations in lysosomal enzyme genes such as glucocerebrosidase may be enzyme dependent. By better understanding why deficiency in, or mutant forms of some but not all lysosomal proteins leads to heightened risk or earlier onset of classical neurodegenerative disorders, novel disease-causing mechanisms may be identified. This article is protected by copyright. All rights reserved. PMID: 33423317 [PubMed - as supplied by publisher]

Integration of full-length transcriptomics and targeted metabolomics to identify benzylisoquinoline alkaloid biosynthetic genes in Corydalis yanhusuo.

Mon, 11/01/2021 - 13:18
Related Articles Integration of full-length transcriptomics and targeted metabolomics to identify benzylisoquinoline alkaloid biosynthetic genes in Corydalis yanhusuo. Hortic Res. 2021 Jan 10;8(1):16 Authors: Xu D, Lin H, Tang Y, Huang L, Xu J, Nian S, Zhao Y Abstract Corydalis yanhusuo W.T. Wang is a classic herb that is frequently used in traditional Chinese medicine and is efficacious in promoting blood circulation, enhancing energy, and relieving pain. Benzylisoquinoline alkaloids (BIAs) are the main bioactive ingredients in Corydalis yanhusuo. However, few studies have investigated the BIA biosynthetic pathway in C. yanhusuo, and the biosynthetic pathway of species-specific chemicals such as tetrahydropalmatine remains unclear. We performed full-length transcriptomic and metabolomic analyses to identify candidate genes that might be involved in BIA biosynthesis and identified a total of 101 full-length transcripts and 19 metabolites involved in the BIA biosynthetic pathway. Moreover, the contents of 19 representative BIAs in C. yanhusuo were quantified by classical targeted metabolomic approaches. Their accumulation in the tuber was consistent with the expression patterns of identified BIA biosynthetic genes in tubers and leaves, which reinforces the validity and reliability of the analyses. Full-length genes with similar expression or enrichment patterns were identified, and a complete BIA biosynthesis pathway in C. yanhusuo was constructed according to these findings. Phylogenetic analysis revealed a total of ten enzymes that may possess columbamine-O-methyltransferase activity, which is the final step for tetrahydropalmatine synthesis. Our results span the whole BIA biosynthetic pathway in C. yanhusuo. Our full-length transcriptomic data will enable further molecular cloning of enzymes and activity validation studies. PMID: 33423040 [PubMed - as supplied by publisher]

5-Hydroxy-4-methoxycanthin-6-one alleviates dextran sodium sulfate-induced colitis in rats via regulation of metabolic profiling and suppression of NF-κB/p65 signaling pathway.

Mon, 11/01/2021 - 13:18
Related Articles 5-Hydroxy-4-methoxycanthin-6-one alleviates dextran sodium sulfate-induced colitis in rats via regulation of metabolic profiling and suppression of NF-κB/p65 signaling pathway. Phytomedicine. 2020 Dec 09;82:153438 Authors: Liu F, Yao Y, Lu Z, Zhang Q, Liu C, Zhu C, Lin C Abstract BACKGROUND: 5-Hydroxy-4-methoxycanthin-6-one (PQ-A) is the main active compound in Ramulus et Folium Picrasmae, a Chinese herbal medicine commonly used in colitis treatment. PURPOSE: To clarify PQ-A's role and mechanism in colitis treatment based on a non-targeted metabolomics study. METHODS: Rats with ulcerative colitis (UC) established with 4% dextran sulfate sodium (DSS) were orally treated with PQ-A. Body weight, disease activity index (DAI), colon length, biochemical parameters (MDA and SOD), and histopathological score in colon tissue were measured. A UPLC-Q-TOF-MS/MS approach-based metabolomics analysis was conducted to explore the underlying mechanisms of PQ-A in colitis treatment. Inflammatory cytokines (TNF-α, IL-1β, IL-6, and IL-10) concentrations in serum and their protein levels in the colon were determined. CD3 and NF-κB/p65 immunohistochemistry in the colon was semi-quantified. The related protein or mRNA in IKK-NF-κB/p65 signaling pathway was measured by Western blotting or RT-PCR, respectively. Potential molecular interactions between PQ-A and NF-κB/p65 was predicted using DS 2.5 software. RESULTS: PQ-A significantly prevented body weight loss and colonic shortening in colitic rats, and reduced the DAI and histopathologic score as well. PQ-A decreased MDA levels in the UC rat serum and increased those of SOD. Metabolomics results revealed forty-nine differential metabolites as biomarkers of DSS-induced colitis, demonstrating that the path-mechanism of colitis involved the perturbation of eight metabolic pathways, including alpha-linolenic acid and linoleic acid metabolism, sphingolipid metabolism, retinol metabolism, bile acid metabolism, et al. Thirty-six biomarkers were especially reversed to normal-like levels by PQ-A via regulation of alpha-linolenic acid and linoleic acid metabolism, sphingolipid metabolism, and retinol metabolism, which effectively hinted the potential pharmacological mechanism of PQ-A related to NF-κB/p65 inflammatory signaling. Molecular docking results predicted high affinity interaction between PQ-A and NF-κB/p65, involving hydrogen-bond interactions at five amino acid residues, suggesting NF-κB/p65 as a target. PQ-A decreased TNF-α, IL-1β, and IL-6 concentrations in serum and their protein levels in colon tissue in colitic rats. CD3, MYD88, p-IκBα, NF-κB/p65, and p-NF-κB/p65 expression levels decreased, whereas those of IKKβ and IκBα increased in colitic tissue following PQ-A treatment. PQ-A strongly inhibited nuclear translocation of NF-κB/p65. CONCLUSIONS: We provide an overview of PQ-A's possible mechanism of action in colitis treatment based on serum non-targeted metabolomics. PQ-A treatment can protect rats against DSS-induced colitis by suppressing the NF-κB/p65 signaling pathway. PMID: 33422953 [PubMed - as supplied by publisher]

Metabolites that activate the inflammasome in nascent metabolic syndrome.

Mon, 11/01/2021 - 13:18
Related Articles Metabolites that activate the inflammasome in nascent metabolic syndrome. J Diabetes Complications. 2020 Dec 31;:107836 Authors: Jialal I, Patel A, Devaraj S, Adams-Huet B Abstract BACKGROUND: Metabolic Syndrome (MetS) is a cardio-metabolic cluster that increases the risk of type 2 diabetes mellitus (T2DM) and atherosclerotic cardiovascular disease (ASCVD). Whilst it affects 35% of the American adult population, its pathogenesis remains to be elucidated. Both insulin resistance and increased inflammation appear to be pivotal mechanisms. The NOD-like receptor family pyrin domain containing protein 3 (NLRP3) inflammasome, an intracellular multi-protein complex, is crucial in the activation of Caspase 1, resulting in an increase in both IL-1and IL-18. In this preliminary report we examined the relationship between metabolites from our exploratory metabolomics studies with the NLRP3 inflammasome activity in the adipose tissue of patients with nascent MetS. PATIENT AND METHODS: This study comprised patients with nascent MetS matched with controls. All patients in this study had normal renal and hepatic function. Metabolites were analyzed from frozen early morning urine samples and correlated with adipose tissue Caspase 1, interleukin-1, and interleukin-18 density. RESULTS: Caspase 1, a marker of NLRP3 inflammasome activity, was significantly elevated in patients with nascent MetS compared to controls. Isoleucine, GABA, Carnitine and PC34: 2 were also significantly increased in patients with MetS. Caspase1 correlated positively with Isoleucine, GABA, Carnitine, and PC34:2. CONCLUSION: We make the novel observation that the NLRP3 inflammasome activity is correlated with certain metabolites (Isoleucine, GABA, Carnitine and PC34:2) and hypothesize that they could trigger increased NLRP3 Inflammasome activity in MetS. However, these preliminary ,hypothesis generating novel findings need confirmation in larger studies of the metabolome and inflammasome. PMID: 33422385 [PubMed - as supplied by publisher]

Metabolic phenotyping reveals a reduction in the bioavailability of serotonin and kynurenine pathway metabolites in both the urine and serum of individuals living with Alzheimer's disease.

Mon, 11/01/2021 - 13:18
Related Articles Metabolic phenotyping reveals a reduction in the bioavailability of serotonin and kynurenine pathway metabolites in both the urine and serum of individuals living with Alzheimer's disease. Alzheimers Res Ther. 2021 Jan 09;13(1):20 Authors: Whiley L, Chappell KE, D'Hondt E, Lewis MR, Jiménez B, Snowden SG, Soininen H, Kłoszewska I, Mecocci P, Tsolaki M, Vellas B, Swann JR, Hye A, Lovestone S, Legido-Quigley C, Holmes E, AddNeuroMed consortium Abstract BACKGROUND: Both serotonergic signalling disruption and systemic inflammation have been associated with the pathogenesis of Alzheimer's disease (AD). The common denominator linking the two is the catabolism of the essential amino acid, tryptophan. Metabolism via tryptophan hydroxylase results in serotonin synthesis, whilst metabolism via indoleamine 2,3-dioxygenase (IDO) results in kynurenine and its downstream derivatives. IDO is reported to be activated in times of host systemic inflammation and therefore is thought to influence both pathways. To investigate metabolic alterations in AD, a large-scale metabolic phenotyping study was conducted on both urine and serum samples collected from a multi-centre clinical cohort, consisting of individuals clinically diagnosed with AD, mild cognitive impairment (MCI) and age-matched controls. METHODS: Metabolic phenotyping was applied to both urine (n = 560) and serum (n = 354) from the European-wide AddNeuroMed/Dementia Case Register (DCR) biobank repositories. Metabolite data were subsequently interrogated for inter-group differences; influence of gender and age; comparisons between two subgroups of MCI - versus those who remained cognitively stable at follow-up visits (sMCI); and those who underwent further cognitive decline (cMCI); and the impact of selective serotonin reuptake inhibitor (SSRI) medication on metabolite concentrations. RESULTS: Results revealed significantly lower metabolite concentrations of tryptophan pathway metabolites in the AD group: serotonin (urine, serum), 5-hydroxyindoleacetic acid (urine), kynurenine (serum), kynurenic acid (urine), tryptophan (urine, serum), xanthurenic acid (urine, serum), and kynurenine/tryptophan ratio (urine). For each listed metabolite, a decreasing trend in concentrations was observed in-line with clinical diagnosis: control > MCI > AD. There were no significant differences in the two MCI subgroups whilst SSRI medication status influenced observations in serum, but not urine. CONCLUSIONS: Urine and serum serotonin concentrations were found to be significantly lower in AD compared with controls, suggesting the bioavailability of the neurotransmitter may be altered in the disease. A significant increase in the kynurenine/tryptophan ratio suggests that this may be a result of a shift to the kynurenine metabolic route due to increased IDO activity, potentially as a result of systemic inflammation. Modulation of the pathways could help improve serotonin bioavailability and signalling in AD patients. PMID: 33422142 [PubMed - as supplied by publisher]

Pages