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Multivariate Data Analysis and Modelling
Basic Course

Chapter 1
Introduction

201/01/2003

Introduction

• Three Types of Problems 

• Difficulties with Complex R&D Problems

• Data Tables and Notation

• Example

• Philosophy of Modelling

• Principle of Projections
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Three types of Problems

Multivariate Data Analysis provides tools for:
• Overview & Summary

– Structure
– Similarity/Dissimilarity
– Outliers

• Classification 
– Recognise groups

• Relationship between Y and X
– Not one x/y at a time, but all x’s/y’s simultaneously
– Finding how the x-variables affect the responses
– Finding how the x- and y-variables correlate to each other
– How to set X to get the best profile of Y 

401/01/2003

Problem I --- Overview & Summary
Example: FOODS
Problem:
To investigate the food consumption pattern in Europe; the relative amount of twenty 
common provisions were collected for 16 countries. 
We would like to examine the similarity/dissimilarity between the countries based on
these data.
Data:
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Problem II --- Classification

Example: IRIS (A classical data set in statistics)

• Data:
– The data table contains petal and sepal lengths and widths of 50 specimens each of 

Iris setosa, Iris versicolor and Iris virginica. This data set was introduced by the 
great statistician Fisher as early as 1936. It is commonly known as "The Fisher Iris 
Data”.

• Goal:
– To find a multivariate model that classifies a new Iris specimen in the correct class

according to its petal and sepal lengths and widths
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Problem III --- Quantification & Prediction

Problem: In sugar production two important product quality properties are impurity and 
colour of the sugar, but measuring these quality measures are laborious and time-
consuming. It was desired to try to replace conventional wet-chemistry measurements 
with rapid on-line fluorescence measurements. 
Data: 106 time points in the process, 571 X-variables, 2 Y-variables

Example: SUGAR

Multivariate calibration at sugar production plant
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Multivariate data analysis

• Extracting information from data with many variables using them all 
simultaneously.

• Deals mainly with:
– HOW to get information out of existing multivariate data

• Deals less with:
– How to structure the problem
– Which variables to measure 
– How to collect data (Design of experiments, DOE)

Needs process
knowledge
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Data

• Measurements of interest on process or system

• Data are not information, they are collected to extract information

• Important features of data
– Variability
– Types of data
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Variability

Any measurement and 
experiment is influenced by 
noise

Under stable conditions, any 
process or system varies around its 
mean, and stays within "control 
limits"; ± 3 standard deviations in 
99.4% of the observations
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Types of data

What types of data for Modelling and Analysis are there?

• Univariate data K = 1

• Bivariate data K = 2

• Few-variate data K < 5

• Multivariate data K > 6

• Quantitative

• Qualitative

• Processes (Continuous/Batch)

• Time Series (Stationary/Dynamic)

• Controlled/Uncontrolled
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Data with many variables (multivariate)

• Interested in many variables K > 6

• Controlled variables (input or x-
variables) and/or characteristics 
(output or y-variables)

• Most systems and processes are 
characterised by a multitude of 
variables  =>  large data matrices

K variable averages
K variable variances

K*(K-1)/2 covariances
Very many
Dominate when K > 6
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Difficulties with complex R&D problems

• Dimensionality
– K (number of X-variables) large
– M (number of Y-variables) large
– N large, medium, or small

Data table short and fat, or square 
and very large 

• Collinearity
– X’s often not independent
– Y’s often not independent

Only a few variables affect 
the system! Which?

Correlation vs causality!

• Noise
– Individual measurements are 
noisy with large variability

• Missing data
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Correlation and Causality

Although the two 
variables are 
correlated, this
does not imply 
that one causes the 
other!

Correlation or causation?
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Methods of Analysis

• COST Approach
– Plot and evaluate one variable or a 

pair of variables at time
– OK 50 years ago (few variables)

• Classical Statistics
– Find a relationship between a few of 

the X’s and one Y at a time
– OK 50 years ago (few and essentially 

uncorrelated variables)

• Multivariate Analysis
– Model all the variables together to 

find relationships between all the X’s 
and all the Y’s

X1 Y1 Y2 Y3X2 X3

X1 Y1 Y2 Y3X2 X3

X1 Y1 Y2 Y3X2 X3
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Risks with traditional statistical methods

• Comparing one group against 
another

• Typically 95% confidence level 
used
– Type I errors 
(False positives – spurious results)
– Type II errors 
(False negatives – missed opportunities, 
risk of not seeing the information)

• Risk = 1 - 0.95k
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All data are needed

• In Shewhart's days (1930) process engineers were lucky to have one 
measurement of product quality

• Today we may get 10 or more quality measurements on each sample 

• Most outliers remain undetected with the use of classical SPC 
techniques!
– No covariance information
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Fast and Correct Decision Making

• The outliers are not detected until you 
look at the combination of the variables

• The information is found in the 
correlation pattern - not in the individual 
variables!
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Classical methods of statistics       ~1930 
• Multiple regression
• Canonical Correlation
• Linear Discriminant Analysis
• Analysis of variance
• & all Maximum Likelihood

Tables are long and lean

Assumptions and limitations:

• Independent X's (Rank X = K) =>  
Many Cases, Few variables

• Precise X's  ("errors" only in Y)

• Regression analysis one Y at a time 
(independent Y's)

• No missing data

N

K



1901/01/2003

Chemistry , Biology, Engineering ...  ~2000

• Experimental Costs (+ ethics,   
regulations)

• Instrumental & electronics      
revolution

Few cases (observations), Many variables

Chemometrics  
Short & fat data tables

• Projection methods: PCA, PLS, 
PLS-DA, PCR .....

• Each "classical" method has a 
projection correspondence

N

K
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Example: FOODS

Problem I --- Overview
Problem: To investigate the food consumption pattern in Europe; the relative amount of 

twenty common products are given for 16 countries. 

Perform a multivariate analysis (PCA) to overview data!!!
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FOODS: PC model, component 1 and 2
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FOODS: Distance to model (DModX) after 2 components

• DModX 
represents the 
unexplained 
variation 
(”residuals”)

• Ireland is farthest 
away from the 
model plane ⇔
displays largest 
portion of 
unexplained 
variation
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Projection Methods
• Observations might be:

– Analytical samples
– Compounds
– Experimental runs (trials)
– Reactions
– Process time points
– Individuals
– ...

• Variables might be:
From spectra: NMR, IR, NIR, UV, MS, X-ray, ...
From separation: HPLC, GC, TLC, Electrophoresis
Process: T, pH, P, flows, ...
Other: Curve forms, structure descriptors, 

thermodynamics, quantum mechanics, 
elemental compositions,..

We have a large data table 
of dimensions N x K
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The Principles of Projections

• Each row in a data table corresponds to a point in K-space, here 3-dimensional space

3
x1 x2 x3

x2

x3

x1
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The Principles of Projections
• We are looking for windows in K-space, which can be used to overview the data and 
interpret their meaning

• Convert data tables 
to plots

• Projection onto line 
in K-space

• Projection onto plane 
• Projection onto 
hyperplane

x3

x1

x2

PC1
PC23

x1 x2 x3

20
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Philosophy of modelling

• Models

WHAT ? Approximation of reality
Analogy: Toy train

Map
Math  function

WHY ? Simplifies study of reality
faster
simpler
cheaper

HOW ? Mathematical models

empirical y = a + bx + e 
semi empirical y = a + blogx + e
fundamental Hψ = Eψ + e

pV = nRT + e

Models founded on analogy and 
projection principles!

All models are approximations of 
reality – always founded on some 
assumptions !



2701/01/2003

Semi-Empirical modelling:  Taylor series.
• In a limited interval, ∆x, any continuous and differentiable function, f(x), can be 
arbitrarily well approximated by a polynomial, a Taylor series:

y = P(x) = b0 + b1x + b2x2 + … + bpxp + … + E(p + 1)

• For a given degree, p, the approximation is 
better, the smaller the interval ∆x

• For a given interval ∆x , the approximation 
is better, the higher the degree, p

• The above can be generalised to functions 
of many variables:

y = P(x1, x2,…) + E = b0 + b1x1 + b2x2 + … + 
b11x2

1 + b22x2
2 + …  + b12x1x2 + b13x1x3 +… 

+b11…1 x1
p + … + E(p+1)

y = f(x)

x

y

y = P(x) ; shifted down

X
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• Fictitious process
– 3 latent variables
– 6 measured variables

Basic Conceptual Projection Model

Any set of variables (X or 
Y) measured on a system or 
process with limited 
variation (observations are 
similar) can be 
approximated by a bilinear 
model

X = TP’ + E
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Summary - Multivariate Analysis by Projections
(PCA & PLS)

• Deals with the dimensionality 
problem

• Handles many variables and few 
observations
– Short and wide data tables

• Handles few variables and many 
observations
– Long and lean data tables

• Handles correlation

• Copes with missing data

• Robust to noise in both X and Y

• Separates regularities from noise
– Models X and models Y
– Models relation between X and Y
– Expresses the noise

• Extracts information from all data 
simultaneously
– Data are not the same as information

• Results are displayed graphically
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Summary - Three types of problems

Overview and 
Summary
• PCA, Principal 
Components Analysis

X
I
II
III

Classification
• SIMCA, one PC 
model per class
• PLS-DA, PLS 
discriminant analysis
• MSPC (one class + 
”outliers”)

Any question to a data table has a projection method solution

YX

Relation between blocks 
of variables, X & Y
• PLS analysis
• PLS-DA
• Multiple regression
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Chapter 2
Principal Component Analysis (PCA) –

Overview of data tables

216/04/2003

Contents
Principal Components Analysis (PCA)

• Notation
• Scaling of Variables
• Geometric Interpretation
• Algebraic Solution
• Example
• Diagnostics

– Outliers
– Residuals
– Model complexity & Predictive power (Cross-validation)

• Conclusions
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Notation
Observations
• Analytical samples
• Chemical compounds
• Trials (experimental runs)
• Process time points
• Chemical reactions
• Biological individuals
• Etc...
Variables
• From spectra

– NMR, IR, UV, MS, ESCA, X-ray, …
• From separation

– HPLC, GC, TLC, Electrophoresis, Trace elements, ...
• Process

– T, P, pH, flows, ...
• Others

– Curves, theory, ...
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Notation
N = number of observations
K = number of variables
A = number of principal components

index i = 1,2,3, ..., N is used for observations
index k = 1,2,3, ..., K is used for variables
index a = 1,2,3, ..., A is used for principal components

ws = scaling weights

T = scores matrix,  t1, ..., tA; score vectors (column vectors)
P'= loading matrix,  p1', ..., pA'; loading vectors (row vectors)
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If the data are not approximately normally distributed, transformation may 
be needed to get a good model

Pre-treatment of data - Transformations

• Data without transformation
– skew distribution

• Data after log-transformation
– closer to normal distribution
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Pre-treatment of data - Scaling
• Problem: Variables can have substantially different ranges
• Example: LOWARP, polymers characterised with regards to strength and warp

• Response wrp3 varies between 0.2 and 1.0
• Response st4 ranges from roughly 17000 to 30000

Response
5 6 7 8 9 10 11 12 13 14 15 16 17 18

wrp1 wrp2 wrp3 wrp4 wrp5 wrp6 st1 st2 wrp7 st3 st4 wrp8 st5 st6

0.9 5.0 0.2 1.0 0.3 4.2 232 15120 1.2 2190 26390 1.3 2400 0.7
3.7 7.3 0.7 1.8 2.5 5.4 150 12230 1.8 905 20270 2.1 1020 0.6
3.6 6.9 0.9 2.1 4.8 9.4 243 15550 1.2 1740 21180 1.4 1640
0.6 3.1 0.3 0.4 0.4 1.1 188 11080 1.0 1700 17630 1.0 1860 0.5
0.3 2.1 0.3 0.3 0.8 1.1 172 11960 1.2 1810 21070 1.3 1970 0.5
1.2 5.0 245 15600 1.1 2590 25310 1.3 2490 0.6
2.3 3.9 0.3 0.4 0.7 1.4 242 13900 1.5 1890 21370 1.6 1780
2.6 5.9 0.4 0.2 0.7 1.2 243 17290 1.6 2130 30530 1.6 2320 0.7
2.2 5.3 0.2 0.7 0.6 2.0 204 11170 1.0 1670 19070 1.1 1890 0.6
5.8 7.0 0.9 1.0 5.6 11.8 262 20160 1.6 1930 29830 1.8 1890
0.8 2.9 0.5 0.6 1.1 2.0 225 14140 1.3 2140 22850 1.3 2110 0.7
2.8 5.1 1.0 1.2 2.7 6.1 184 15170 1.9 1230 23400 2.1 1250 0.6
1.1 4.7 0.6 0.9 1.3 3.5 198 13420 1.4 1750 23790 1.4 1930 0.7
1.9 4.7 1.0 1.0 2.8 5.4 234 16970 1.5 1920 25010 1.6 1790 0.7
2.9 5.9 0.5 0.6 1.0 6.6 239 15480 1.5 1800 23140 1.6 1730
5.5 7.9 0.8 2.4 5.5 9.3 256 18870 1.5 1880 28440 1.8 1790
3.2 6.0 0.3 0.5 1.5 5.2 249 16310 1.5 1860 24710 1.7 1780
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Scaling, Example Body height/Body weight

Right:
The 
outlier 
not so 
easy to 
spot!

Height (m) 1.8 1.61 1.68 1.75 1.74 1.67 1.72 1.98 1.92 1.7 1.77 1.92
Weight (kg) 86 74 73 84 79 78 80 96 90 80 86 93
Height (m) 1.6 1.85 1.87 1.94 1.89 1.89 1.86 1.78 1.75 1.8 1.68
Weight (kg) 75 84 85 96 94 86 88 99 80 82 76

Data for 23 individuals (22 players + referee; football game)

Same spread
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Scaling of variables
• Defining/Selecting the length of variable axes
• Recommended: To set variability along each axis equal to one (unit variance)

K
xn1 xn2 xnk

N x2

x3

x1
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Unit variance scaling (UV-scaling)
• PCA is scale dependent

Variance of a variable  <=>  "importance” Drawback ? Asset?

X

xik = xik*wsk;   wsk is scaling weight of var. k
ws   =>  1/sk

All variables  =>  s2(xk) = 1 (variance = 1)
•The scaling can be modified (advanced topic)

ws

measured
  values
    &
"length"

unit variance

scaling
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PCA -- Geometric Interpretation, 1

• For the matrix X we construct a space with K dimensions (we see, however, only three 
of these)
• Each variable has one co-ordinate axis with the length determined by scaling, usually 
unit variance

x2

x3

x1
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PCA -- Geometric Interpretation, 2

• Each observation is represented by one point in K-space
• Hence, the data matrix X is a swarm of points in this space

x2

x3

x1
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PCA -- Geometric Interpretation, 3

• First we calculate the average of each variable. The vector of averages is a point in K-
space. The average is subtracted.
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x1
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scaling
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PCA -- Geometric Interpretation, 4

• The mean-centering procedure corresponds to moving the co-ordinate system

x3

x1

x2

1416/04/2003

PCA -- Geometric Interpretation, 5

• The first principal component is the line in X-space that best approximates the data 
(least squares). The line goes through the average point.

x3

x1

x2

PC1

Projection of
observation i
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PCA -- Geometric Interpretation, 6

• The second PC is represented by a line in X-space orthogonal to the first PC, also 
passing through the average point. The second PC improves the approximation of X as 
much as possible.

x3

x1

x2

PC1

PC2
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PCA -- Geometric Interpretation, 7

• The two principal components form a plane in the X-space. This plane is a window into 
the multidimensional space, which can be visualised graphically.

x3

x1

x2

PC2
PC1

Projection of
observation i
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PCA -- Geometric Interpretation, 8

• Yellow points are the observed values. Blue points are their approximations. Projected 
locations on the model (line, plane, or hyperplane) are given by the scores (t).

1816/04/2003

PCA -- Geometric Interpretation, 9

• The direction of, for example, PC1 (p1) is given by the cosine of the angles α1, α2 and 
α3. These values indicate how the variables x1, x2 and x3 "load" into PC1. Hence they are 
called loadings.
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x1

x2

PC2
PC1
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3
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PCA, overview of a data table (data set)

• X is modelled as

• Each PC (score vector) is associated with 
a loading vector

• Scores, (t) are co-ordinates in the 
(hyper)-plane (columns in T)

• Loadings, (p) define the orientation of 
the (hyper)-plane (rows in P')

• DModX, is the distance between the 
observations and the model plane 
(residual row SD)

X = 1* x̄  ´  + T*P´ + E

x3

x1

x2

PC2
PC1

1
2

3
α

α 

α 
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Scores & Loadings

• The scores, tia, are new variables that summarise the old ones 

• The scores are sorted in descending importance, t1, t2, t3,...

• Typically 2-5 principal components are sufficient to summarise a data table well

• The loadings, pak, express how the old variables are linearly combined to form the 
scores; scores are combinations of the initial variables

• The loadings are used to interpret the scores. They unravel the magnitude (large/small 
correlation) and the manner (positive/negative correlation) in which the variables 
contribute to the scores (principal components)
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Example - Overview (FOODS)

Problem I --- Overview
Problem: To investigate the food consumption pattern in Europe; the relative amount of 

twenty common products are given for 16 countries. 

Perform a multivariate analysis (PCA) to overview data!!!

2216/04/2003

-0.40

-0.20

0.00

0.20

0.40

-0.4 -0.2 0.0 0.2 0.4

p[
2]

p[1]

FOODS.M1 (PCA-X), PCA for overview
p[Comp. 1]/p[Comp. 2]

 

Gr_Coffe

Inst_Coffe

Tea
Sweet

Biscuits

Pa_Soup

Ti_Sou

In_Potat

Fro_Fish
Fro_Ve

Apples
OrangesTi_Fr

Jam
Garlic

Butter
Margarine

Olive_Oil

Yoghurt

Crisp_Brea

-4

-2

0

2

4

-7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7

t[2
]

t[1]

FOODS.M1 (PCA-X), PCA for overview
t[Comp. 1]/t[Comp. 2]

GermanyItaly

France Holland
Belgium

LuxembouEngland

PortugalAustria

Switzerl

Sweden

DenmarkNorway
Finland

Spain
Ireland

Example - Overview (FOODS)



2316/04/2003

-0.4

-0.2

0.0

0.2

0.4

-0.4 -0.2 0.0 0.2 0.4

p[
3]

p[1]

FOODS.M1 (PCA-X), PCA for overview
p[Comp. 1]/p[Comp. 3]

 

Gr_Coffe

Inst_Coffe
Tea

Sweetn
BiscuitsPa_Soup

Ti_Soup

In_PotatFro_Fish
Fro_Veg

Apples

Oranges

Ti_Fru

Jam

Garlic

Butter

Margarine
Olive_Oil

Yoghurt

Crisp_Brea

-4

-2

0

2

4

-7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7

t[3
]

t[1]

FOODS.M1 (PCA-X), PCA for overview
t[Comp. 1]/t[Comp. 3]

GermanyItaly

France

HollandBelgium

Luxembou

England

Portugal
Austria

Switzerl SwedenDenmark
Norway

Finland

Spain

Ireland

Example - Overview (FOODS)

2416/04/2003

Example - Overview (FOODS)

• DModX 
shows the 
distance to 
the model 
plane

• Ireland is 
modelled 
well by the 
third 
component
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How to use PCA

Example: LOWARP

• Problem: To develop a new 
polymer with a given profile of warp 
(low warp) and strength (high 
strength)

• The polymers consist of 4 
constituents (ingredients)

– glas
– crtp
– mica
– amtp

• 17 polymers were made according 
to a mixture design and 14 responses 
were determined for each polymer

• Responses: wrp1-wrp8, st1-st6
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Application: PCA on LOWARP responses
• 17 polymers, 14 responses; warp and 
strength measured

• 14 responses summarised by two principal 
components (projected onto a plane)

• 1st PC 49% SS
• 2nd PC 27% SS

• Conclusion:
- PC1 interpreted as mainly warp
- PC2 interpreted as mainly strength
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PCA - Diagnostics

• Observation diagnostics
– strong and moderate outliers
– groups
– trends

• Variable diagnostics
– correlation
– contribution
– which variables are well explained

• Model diagnostics
– fit (R2)
– prediction (Q2), Cross-validation
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Observation diagnostics 
PCA can be used to unravel
• Strong outliers (groupings, trends)
• Moderate outliers (groupings, trends)

Strong outliers:
• Found in scores
• Detection tool: Hotelling’s T2

– a method to establish the “normal” area in the score plot

Moderate outliers:
• Found in observation residuals
• Detection tool: DModX
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Observation diagnostics; Example

• Thickness: Quality control scheme 
for polymer disk manufacturing

• The objective was to produce disks 
with uniform thickness within given 
specification

• Problems stemmed from small but 
expensive increases in the number of 
disks discarded

• Nine thickness measurements were 
taken on the disks produced

1
2 3

4 5

6

8

9

7
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Observation diagnostics - Strong Outliers

• Outliers are serious and interesting, and easy to find
• Strong outliers are found in score plots

x3

x1 x2

PC2

P C1

x3

x1

x2

PC2

PC1

-1

0

1

2

3

0 10 20

t[2
]

t[1]

thicknes.M1 (PCA-X), PCA for overview
t[Comp. 1]/t[Comp. 2]

1
2

3
4
56
7

8
910

111213
14

1516
17

1819

2021 22

23

2425

26

27
2829

30

313233
34
35
36
37
38

39
4041

42
43 44

45
4647

4849

5051

52535455
56

5758 59
60

61 626364
65

66
67

68
69
70

7172

73

7475

767778798081

82

83

84 85
86

87

88
89
90
91

92
9394
9596

97

98
99100

101102103 104

105

106
107 108

109

110

111

112
113

114
115116117

118
119120121122

123

124
125

126127128
129130

131132
133

134

135

136137

138

139140
141

142

143

144
145

146

147

148

149

150

151

152
153154

155

156
157

158
159

160161
162

163

164

165

166

167

168

169
170

171

172

173
174175176177
178

179

180
181

182
183

184



3116/04/2003

Strong outliers - detection tool Hotelling's T2

• Hotelling’s T2 is a multivariate generalisation of Student’s t-test
• It provides a tolerance region for the data in a two-dimensional score plot, e.g., t1/t2
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Observation diagnostics - Moderate Outliers
• Moderate outliers can be detected by 
inspecting the residual for each 
observation (DModX)

• Residual observation variation (SSOX)
Σk eik

2

• Residual observation variance (S2OX)
∑k eik

2/ DF
• DModX, normalised distance

[S2OX/variance (E)] 1/2

• DModX, absolute distance
[S2OX] 1/2

x3

x1

x2

PC2
PC1

Residual distance
of observation i
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Moderate Outliers - Detection tool DModX

Critical distance (DCritX) is derived from the approximate F-distribution of DModX2

No moderate outliers One to four moderate outliers
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Interpretation of variables

• Variable correlations and model contribution can be seen in loading plots
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• The residuals tell us the extent to which each variable is modelled 
(ranges from 0 to 1)
– Residuals of matrix E pooled column-wise

• SSVX, residual variable variation
Σi eik

2

• S2VX, residual variable variance 
Σi eik

2/DF
• R2VX (cum), explained variation

1- SSVX[A]/SSVX[0]
• R2VXadj(cum), explained variance

1- S2VX[A]/S2VX[0]

Residuals of variables
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Variable diagnostics - Well explained variables

• R2VX and R2VXadj
can be used to assess 
which variables are 
well explained and 
which are not
– R2 increases with 

increased number of 
principal components
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Model diagnostics - Validity vs model complexity

• Trade-off between fit and prediction 
ability

• Question: How can we determine 
the appropriate number of principal 
components to include in a model?

• Method: Cross-validation (CV); 
CV simulates the predictive power of 
a PC-model.

A

R2

Q2

0

1

R2 estimates goodness of fit
Q2 estimates goodness of prediction
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Cross-validation, PCA

• Data are divided into G groups (SIMCA default 
is 7) and a model is estimated for the data 
devoid of one group

• The deleted group is predicted by the model ⇒
partial PRESS  (Predictive Residual Sum of 
Squares or Prediction Error SS)

• This is repeated G times; then all partial 
PRESS's are summed to PRESS

• If a new PCa enhances the predictive power 
compared with PCa-1 (i.e., PRESS < SS), the 
new PCa is kept in the model

• Cross validation is 
done in two phases and 
several deletion rounds: 
– First removal of 
observations (rows)
– Then removal of 
variables (columns)
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Model diagnostics - Evaluation of R2 and Q2

• PRESS is the sum of squared 
differences between predicted and 
observed x-elements.

Q2 > .5 Good (Depending on 
application)

Q2 > .9 Excellent (Depending on 
application)

Important:
1. R2 is always larger than Q2

2. High R2 and high Q2 is good

3. The difference between R2 and Q2

should not be too large

PRESS (x x )ik ik
2= −∑ $

• PRESS can be transferred into a 
dimensionless quantity, Q2, which 
resembles R2

Q2 = 1 - PRESS/SSXtotal

R2 = 1 - SSXresid/SSXtotal
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PCA Summary
Principal Component Analysis

• Modelling:
Data table X is approximated by a least 
squares (hyper)-plane + residuals (E)

X 1*x' T* P' E= + +

• Calculations:
One PC at a time  -- NIPALS
All PC.s together  -- SVD (can often not 

handle missing data)
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Conclusions
Principal Component Analysis 
models the correlation structure of a 
data set and is used for:

Overview of a data set (data table):
• dominating variables
• trends
• outliers, groups, clusters
• similarities / dissimilarities

observations scores
variables loadings

Summary of a data set (data table):
• scores ⇔ latent variables

principal properties
• loadings ⇔ influence of 

variables

• Classification: A new observation is similar to the training observations if it is 
found within the tolerance volume of the model
• In processes, PCA is used for overview of data and for monitoring





Multivariate Data Analysis and Modelling
Basic Course

Chapter 3
Applications of PCA
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Contents

• Overview
Quality control
Assessment of drug exposure

• Classification
3 different types of IRIS
4 classes of wood chips from particleboard industry
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• Electrolytic production of Copper
– Boliden AB produces approximately 300 tonnes of Copper every day
– extremely pure (99.998 %) Copper
– impurity testing twice a day to ensure quality (TAI, Total Analysis Index) 
– TAI is a weighted sum of 8 different impurities (PPM-level) 

Example – Quality control (CUPRUM)
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Example – CUPRUM

• The data - 9 variables, 730 observations
– 8 measured variables (Ag-Se)
– 1 calculated variable (TAI)
– data sampled twice a day over one year giving 730 observations
– all variables were log-transformed

• The Copper industry uses only the TAI value to determine the quality 
and thereby the price. Copper products with TAI over 8.0 are discarded.

• Question:
– Can we do better with projection methods? 
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CUPRUM – Time series plot of TAI
• Quality control limit corresponding to TAI = 8
• Samples 111 (TAI = 8.1) and 302 (TAI = 7.8) have approximately the same TAI value
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CUPRUM – Scores and loadings of PC-model
• A PC-projection of the table was made. 

The 8-dimensional table (the TAI 
variable excluded) was thus projected 
onto a two-dimensional plane, showing 
67% of the variability in the data

• Samples 111 and 302 are situated far 
apart!

• The corresponding loading plot 
revealed two types of impurities
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CUPRUM – Contribution plots
• Contribution plots “zoom in” on a single sample. Here, the variable profiles of samples 

111 and 302 are shown.
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Statistical process control (SPC) charts
• SPC uses quality and/or process data to monitor the process. Walther Shewhart (father 
of SPC) introduced the concept for defining the "normal" region of variation for one 
variable. Today: Multivariate SPC, MSPC.
• Illustrated by Hotelling’s T2 and DModX.
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CUPRUM - Summary

The overview of the Copper data
• The PC-analysis

– The score plot showed that two samples (111 and 302) are not similar even though 
their TAI-values indicate this

– Using the loading plot, the two samples could be ascribed to two different types of 
impurities

• Summary
– The overview of the data provided by the PC-analysis is much more powerful in 

describing the impurities than the TAI-variable. The TAI-scale does not 
distinguish between different types of impurity combinations, and therefore leads 
to loss of information.
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Example – Assessment of drug exposure (Metabonomics)

• Metabonomics: monitoring of complex time-related metabolite profiles 
that are present in biofluids, e.g., urine, plasma, saliva, etc.
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• Proton-NMR spectra 
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drug-exposed rats
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Metabonomics – The Data

• Rats exposed to chloroquine (an antimalarial) or amiodarone (an 
antiarrhythmic)

• Observations: N = 57 rats
Variables: K = 194 variables (1H-NMR shift regions) 

• Six groups (“classes”):
– Control Sprague-Dawley, 10 rats, “s”
– Sprague-Dawley treated with amiodarone, 8 rats, “sa”
– Sprague-Dawley treated with chloroquine, 10 rats, “sc”
– Control Fisher, 10 rats, “f”
– Fisher treated with amiodarone, 10 rats, “fa”
– Fisher treated with chloroquine, 9 rats, “fc
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Metabonomics – PCA to overview

• Two first 
components
R2X = 0.48
Q2X = 0.38  
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• One outlier, rat 27, encircled
– Measurement error ?
– Handling/environmental differences ?
– Slow responder ? 
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Metabonomics – Contribution plot to reveal differences

• How is rat 27 
different from a 
“normal” sc-rat?

• Chemical shift 
regions 2.58, 
2.70 and 3.22 -5.00
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Metabonomics – Conclusions

• Multivariate analysis of NMR-data creates one or several maps (i.e, 
score plots, loading plots) that show trajectories of biochemical 
changes in biofluids induced by toxin exposure or disease

• Through this technology it is possible 
- (i) to detect target organs or pathways of dysfunction
- (ii) to uncover likely chemical mechanisms of toxicity, and
- (iii) to identify useful biomarkers indicative of onset, development, 
and decay of abnormal animal health conditions.

Leading reference: Nicholson, J.K., Connelly, J., Lindon, J.C., and Holmes, E., 
Metabonomics: A Platform for Studying Drug Toxicity and Gene Function, Nature 
Reviews, 2002; 1:153-161.
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Classification (IRIS)
• IRIS A classical data set in statistics

• Data:
The data table contains petal (sw: kronblad) 
and sepal (sw: foderblad) lengths and 
widths of 50 specimens each of Iris setosa, 
Iris versicolor and Iris virginica. This data 
set was introduced by the great statistician 
Fisher as early as 1936. It is commonly 
known as "The Fisher Iris Data”

• Objective:
A multivariate model that classifies a new 
Iris specimen in the correct group according 
to its petal and sepal lengths and widths

K = 4

N
 =

 7
5

25 Iris Se.
(1 - 25)

25 Iris Ve.
(26 - 50)

25 Iris Vi.
(51 - 75)

K = 4

N
 =

 7
5

25 Iris Se.
(76 - 100)

25 Iris Ve.
(101 - 125)

25 Iris Vi.
(126 - 150)

Training data Prediction data
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IRIS: Step 1, Overview of training data (PCA)

• The PCA score plot 
shows Setosa well 
separated from 
Versicolor and Virginica

• The latter two classes 
are partly separated

• R2 = 0.96 (A = 2)
• Q2 = 0.75 (A = 2)
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IRIS: Step 1, Overview of data

• The loading plot 
shows that Setosa
specimens are smaller 
(shorter and slimmer)
than Virginica and 
Versicolor samples.

• The variable Se_Wi is 
mainly responsible for 
the within class 
separation of samples.
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IRIS: Step 1, A look at the raw data

• Conclusion: Setosa is easy to separate from Virginica and Versicolor

Sepal Length Sepal Width Petal Length Petal Width

/ Setosa
/ Min 4.30 2.30 1.00 0.10
/ Max 5.80 4.40 1.90 0.60

/ Versicolor
/ Min 4.90 2.00 3.00 1.00
/ Max. 7.00 3.40 5.10 1.80

/ Virginica
/ Min 4.90 2.20 4.50 1.40
/ Max. 7.90 3.80 6.90 2.50
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IRIS: Step 2, PC modelling of Ve/Vi

• Question
How do we separate Virginica and 
Versicolor ?

• First attempt
A PC model with only Virginica and 
Versicolor ?

• Conclusion
Some but not complete separation

2016/04/2003

Dcrit

IRIS: Step 3, SIMCA

• A separate PC model is made for each class (Se/Ve/Vi)
• Then all prediction data (75 obs) are subjected to each model

• Assignment of class membership is based
on a comparison of DModX and Dcrit
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IRIS: Prediction (classification) by Setosa model

• 24 of 25 Setosa’s are correctly classified; Ve/Vi fundamentally different

Setosa
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IRIS: Prediction (classification) by Versicolor model

• Ve prediction set observations correctly classified; however, some Vi 
samples are false positives

Versicolor
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IRIS: Prediction (classification) by Virginica model

• Vi prediction set observations correctly classified; however, most Ve 
samples are also inside Dcrit of Vi-model

Virginica
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• Named after the Belgian 
chemometrician Danny 
Coomans (~ 1980)

• DModX of two models 
are plotted in a scatter 
plot

• Four zones of diagnostic 
interest are created (see 
plot)

Only Vi

Only Ve

Neither Vi
nor Ve

Both Vi and Ve



2516/04/2003

IRIS - Summary

• The conclusions that may be drawn are thus the following:
– (i) Setosa specimens are quite different from Versicolor and Virginica

observations.

– (ii) There is an overlap between the Versicolor and Virginica classes, and they 
cannot be completely separated. However, it is possible to predict if an unknown 
sample is 

(a) definitely Versicolor;
(b) definitely Virginica;
(c) definitely neither;
or 
(d) Virginica or Versicolor

using the SIMCA methodology.
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Industrial example: NIR_Chip

• NIR measurements from particleboard industry

• NIR data in the range 400-2498 nm (1050 spectral variables) were 
measured on four types of wood chips – differing in particle size and 
moisture content 

• 140 (4*35) training set observations and 78 prediction set samples

• Objective: To study whether the wood chips could be distinguished 
from each other using NIR and SIMCA
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NIR_Chip: Step 1 – PCA for overview

• The two first components explain 94% of the spectral variation; 
Some separation among the four classes is seen

Particle size

M
oi

st
ur

e

0.50

1.00

1.50

2.00

0 20 40 60 80 100 120 140
D

M
od

X[
2]

(N
or

m
)

Num

NIRChipT.M1 (PCA-X), PCA for overview
DModX[Comp. 2]

M1-D-Crit[2] = 1.163 

D-Crit(0.05)

60 88 139

2816/04/2003

NIR_Chip: Step 2 – SIMCA

• Four class-
specific PCA 
models were 
computed 

• Complexity 
always A = 3

• R2X in the range 
0.86 to 0.94
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M2-D-Crit[3] = 1.237  
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NIR_Chip: Classification of prediction set samples

• Class 1 model

• Observations 141-161 are classified as close to Class 1
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NIR_Chip: Classification of prediction set samples

• Class 2 model

• Observations 162-166 are classified as close to Class 2
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M4-D-Crit[3] = 1.237  

D-Crit(0.05)

NIR_Chip: Classification of prediction set samples

• Class 3 model

• Observations 167-175, 177, and 192-201 are classified as close to Class 
3. Samples 176, 178-191, and 202-218 are also classified as rather
similar to class 3.
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NIR_Chip: Classification of prediction set samples

• Class 4 model

• Observations 203-209 are classified as close to class 4. Samples 202 
and 210-218 are classified as rather close to class 4 
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Conclusions of NIR_Chip investigation
• NIR characterisation coupled with multivariate data analysis is useful for on-line 

discrimination of four types of starting material in the particleboard industry. 

• The correct class memberships are as follows:
– Observations 141-161 ⇔ class 1
– Observations 162-166 ⇔ class 2
– Observations 167-201 ⇔ class 3
– Observations 202-218 ⇔ class 4.

• Classification results ranged from good to excellent for the prediction data. The worst 
classification was for class 3 samples. 

• This study hints at how multivariate characterisation for classification of raw materials 
can be carried out when the same starting material is delivered in different batches, or 
supplied by different manufacturers. This approach is common practice in the 
pharmaceutical and particleboard industries.





Multivariate Data Analysis and Modelling
Basic Course

Chapter 4
Partial Least Squares Projections to Latent Structures (PLS)

– Relating X to Y

201/01/2003

Contents
Partial Least Squares Projection to Latent Structures (PLS)

• Notation
• Scaling of Variables
• Geometric Interpretation
• Algebraic Solution
• Example
• Diagnostics

– Outliers
– Residuals
– Cross-validation

• Predictions
• Conclusions
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Quantitative Modelling, PLS
• Find relationships between sets of multivariate data X and Y
• Predict one set from other for new observations xi

Applications:
• Process modelling and optimisation
• Chemical composition ⇔ Quality

Physical measurements Biol. Activity
• Chemical structure ⇔ Reactivity

Properties
Biol. Activity

• Multivariate calibration
Signals (spectra) ⇔ Concentrations

Energy content
Age; Taste.......…

401/01/2003

Example; Whisky
Correlation of Sensory & Analytical Data in Flavour Studies into Scotch Malt Whisky; 
Swan & Howie, 1984

• PCA of sensory data of 14 Scotch
malt whiskies

• PCA of GC data of 14 Scotch malt 
whiskies
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Example; Whisky
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Notation
K = number of X variables
M = number of Y variables
N = number of observations
A = number of PLS components

T = matrix of X-scores with columns t1,.., tA (vectors)
P = matrix of X-loadings with columns p1,.., pA (vectors)
W = matrix of X-weights with columns w1,.., wA (vectors)
U = matrix of Y-scores with columns u1,.., uA (vectors)
C = matrix of Y-weights with columns c1,.., cA (vectors)

K

N

M

N



701/01/2003

Scaling of variables

• Defining the length of variable axes (X- and Y-spaces) 
• Usually, unit variance scaling is initially used to set each axis length (length one)

K/M

N x2

x3

x1

measured
  values
    &
"length"

unit variance

scaling
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PLS -- Geometric Interpretation, 1

• For each matrix, X and Y, we construct a space with K and M dimensions, respectively 
• Each X- and Y-variable has one coordinate axis with the length defined by its scaling, 
typically unit variance
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PLS -- Geometric Interpretation, 2

• Each observation is represented by one point in the X-space and one in the Y-space
• As in PCA, the initial step is to calculate and subtract the averages; this corresponds to 
moving the coordinate systems
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PLS -- Geometric Interpretation, 3

• The mean-centering procedure implies that the origin of each coordinate system is re-
positioned 
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y1

x2

Same observation
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PLS -- Geometric Interpretation, 4

• The first PLS-component is a line in the X-space and a line in the Y-space, calculated to
a) approximate the point-swarms well in X and Y and also
b) provide a good correlation between the projections (t1 and u1)

• Directions are w1 and c1 and co-ordinates along these vectors are t1 and u1, respectively.
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PLS -- Geometric Interpretation, 5

• The projection coordinates, t1 and u1, in the two spaces, X and Y, are connected 
and correlated through the inner relation ui1 = ti1 + hi (hi is a residual)
• The slope of the dotted line is 1.0
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PLS -- Geometric Interpretation, 6

• The second PLS component is represented by lines in the X- and Y-spaces. X-lines are 
orthogonal. Y-lines may or may not be orthogonal.
• These lines, with directions w2 and c2 and projection co-ordinates t2 and u2, improve the 
approximation and correlation as much as possible.
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PLS -- Geometric Interpretation, 7

• The second projection coordinates (t2 and u2) correlate, but usually less well than the 
first pair of latent variables
• When the correlation is better between t2 and u2 than between t1 and u1 this indicates a 
strong structure in X that is not present in (related to) Y
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u1

t2

u2
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PLS -- Geometric Interpretation, 8

• The PLS components form planes in the X- and Y-spaces
• The variability around the X-plane is used to calculate a tolerance interval within 
which new observations similar to the training set will be located. This is of interest in 
classification and prediction.
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PLS -- Geometric Interpretation, 9

• Repeated 
plotting of 
successive 
pairs of latent 
variables will 
give a good 
appreciation 
of the 
correlation 
structure

t1

u1

t2

u2

tA

uA

t3

u3
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PLS, Overview

(because U = T + H)
(inner relation)

X 1* x' T* P' E= + +

Y 1* y' U*C' F= + +
= + +1 y' T C G* * '

PLS differences to PCA

Projection of X that Projection of X that
both is an optimal
approximates X well, approximation of X
and correlates well with Y (least squares fit)
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PLS, Parameter properties
• For each component:
1) t are linear combinations of X

with weights w
- t is a summary of the X-variables 

that are correlated with Y

2) u are linear combinations of Y with 
weight c
- u is a summary of the Y-variables

3) w are the covariances between the x's 
and u
- Columns of X highly correlated with Y

have high weights

4) At Convergence for the 
Orthogonality:

- p is computed so that t*p' is the ”best
approximation of X"
- t*p' is removed from X for the next 
component
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PLS predictions

• A new observation is similar to the 
training set if it is inside the tolerance 
cylinder in X-space

• Then its projection on the X-model (t) 
can be entered into the T-U-relation 
giving a u-value for each model 
dimension

• These values define a point on the Y-
space model, which, in turn, 
corresponds to a predicted value for 
each y-variable t

2001/01/2003

Example - Understanding relationships (LOWARP)

• Experimental production of new polymer
– R&D environment
– Many responses to consider

• The development of a polymer with a certain profile of properties was 
desired: low warp and shrinkage and high strength. To obtain this a 
number of polymer formulations were made with four constituents
– Glass 20 to 40 %
– Crtp 0 to 20 %
– Mica 0 to 20 %
– Amtp 40 to 60 %
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Example - Understanding relationships (LOWARP)

• The Data - 18 variables, 17 observations
– 4 manipulated variables (X)
– 14 quality variables (Y)

• Statistical experimental design was used
– the design was a mixture, extreme vertices design
– 14 runs + 3 centre points

• The use of design of experiments (DOE) enables us to use the PLS-
model as a causal model
– establish cause and effect relationships

2201/01/2003

PLS score plots: relationships among observations
t1/u1 shows
relationships 
among
observations 
between
X (t1) and Y 
(u1)

t2/u2 shows 
relationships 
between X 
and Y in the 
second 
dimension

t1/t2 shows 
relationships 
among 
observations 
in the X-
space
(r = 0.0)

u1/u2 shows 
relationships 
among 
observations 
in the Y-
space
(r = 0.0)
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PLS - Interpretation of variable influence

a) Loadings (w*c)
- Provides an overview of the relationships among all X-variables and Y-
variables at the same time. Often plotted as scatter plots. Line plot 
representation used with spectral data (see Chapter 6).

b) Regression coefficients
- The size and sign of the scaled and centred regression coefficient
indicates relation of term to y.

c) VIP, variable influence on projection.
- Cumulative measure of the influence of term k on the model. Terms with 
VIP larger than around 0.8 are the most meaningful.
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Interpretation of PLS-model – loadings 
• Find the point (0,0), marked with 
lines.
• Find an important y-variable (e.g. 
wrp2)
• Imagine a line from this y through 
(0,0)
• Project all x-variables down on 
this line
• The x-variables far out from (0,0) 
are important
• x.s on same side of (0,0) to y have 
positive influence
• x.s on other side of (0,0) to y have 
negative influence
• ANALOGY: A See-saw: close to 
the fulcrum (the pivotal point) no 
influence, but far out large impact
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Interpretation of PLS-model – regression coefficients

• Positive (1), 
negative (2), 
and near 
zero (3) 
coefficient

1

3

1

2

2

3
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Interpretation of PLS-model – regression coefficients

• Regression 
coefficients -
uncorrelated 
responses

• Regression 
coefficients -
correlated 
responses
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Interpretation of PLS-model – VIP

• VIP is a condensed summary of 
a PLS model showing the 
influence of each X-variable on 
the model

• Only one VIP expression 
regardless of number of 
responses and Y-variables
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Variable related parameters – summary

a) Loadings
w*c

b) regression coefficients
Y = X*BPLS + F
B = W*(P'*W)-1*C'  

The size and sign of the scaled and 
centred regression coefficient 
indicates relation of term to y.

Note: In PLS the regression 
coefficients are generally not
mathematically independent

c) VIP, variable influence on projection. 
Cumulative measure of the influence of term 
k on the model. Terms with VIP larger than 
around 0.8 are the most meaningful.

[VIP(k)]2 = [[∑a[(Wak
2) * SSY%(a)]] / 

SSY%(cum)]* K
SSY%(a) = % SS of Y explained by the a.th PLS 

component
SSY%(cum) = Total SS of Y explained by the model

K = Number of terms in the model
∑ VIP(k)2 = K
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PLS - Diagnostics

• Observation diagnostics - strong and moderate outliers

• Variable diagnostics - which variables are well explained?

• Model diagnostics - cross-validation & response permutation test

3001/01/2003

PLS - Observation Diagnostics
• Strong outliers, groups, inhomogeneity,...

PLS plots:
1) X space (t1,t2..)
2) Y space (u1,u2,..)
3) X,Y space (t1,u1,..)

• Moderate Outliers, trends, in X and Y
Plot DModX vs Num of observation (not for designed data):

Observation X → RSD:  Distance to Model (DModX)
Check that no observation has large DModX

Plot DModY vs Num of observation
Check that no observation has large DModY

• Observation Risk
Sensitivity measure
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PLS - Strong outliers

• An 
observation 
may be an 
outlier in X, 
in Y, and in 
the X/Y 
relation
(a few 
examples are 
shown)
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PLS - Moderate outliers

• Moderate outliers can be 
found when examining PLS 
residuals, E and F:

• The E and F residual matrices are related to the diameters of the "beer cans" 
surrounding the data points

GCTy1
FCUy1Y
EPTx1X

++=
++=
++=

'*'*
'*'*
'*'*

x1

x2

x3

y1

y2

y3

Comp1

Comp1
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PLS - Moderate outliers

• Moderate outliers can be detected by 
inspecting the residual SD for each 
observation (DModX)

• Residual observation variance (S2OX)
∑k eik

2/ DF
• DModX, normalised distance

[S2OX/variance (E)] 1/2

• DModX, absolute distance
[S2OX] ½

• Formulas above are analogous for Y-
space, only eik should be replaced with 
fim

x1

x2

x3

Comp1
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PLS - Moderate outliers

• There are no moderate outliers in the LOWARP example
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PLS – Observation risk
• A measure of how sensitive a model is to the inclusion of an 
observation
• LOWARP – PLS model most sensitive to observations 2, 4, and 10
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PLS - Variable diagnostics
• Information from size of residuals of 

X-variables: 
Shows how much of the variation of a 

variable that the model explains

• SSVX, residual variable variation
∑i eik

2

• S2VX, residual variable variance 
SSVX/DF

• R2VX (cum), explained variation
1- SSVX[A]/SSVX[0]

• R2VXadj(cum), explained variance
1- S2VX[A]/S2VX[0] 
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PLS - Variable diagnostics
• Information from size of residuals of Y-

variables:
Shows how well a Y-variable is modelled

• SSVY, residual variable variation
∑i fim

2

• S2VY, residual variable variance 
SSVY/DF

• R2VY (cum), explained variation
1- SSVY[A]/SSVY[0]

• R2VYadj(cum), explained variance
1- S2VY[A]/S2VY[0]
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PLS - Model diagnostics 

• SIMCA supports two internal model validation strategies

1. Cross validation
To estimate the optimal model complexity

2. Response permutation test (Validate-option)
To check the degree of overfit (Discussed in Chapter 6)
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Model validity vs model complexity
• Trade-off between Fit and Prediction 
ability

• A model must not be overfitted, i.e. 
modelling noise

• Question: How can we determine 
the appropriate number of PLS 
components to include in a model?

• Method: Cross-validation (CV); CV 
simulates the predictive power of a 
PLS-model.

A

R2

Q2

0

1

R2 estimate of goodness of fit
Q2 estimate of goodness of prediction
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Cross-validation, PLS
• Data are divided into G groups (SIMCA-P default = 7)
• A model is estimated for the data devoid of one group
• The deleted group is predicted by the model  ⇒ partial PRESS
• This is repeated G times; then all partial PRESS's are summed to PRESS
• If a new PLS component enhances the predictive power compared with the preceding 

PLS component, i.e. PRESS < SS, the new PLS component is kept in the model
• NOTE: In PCA cross-validation estimates Q2X, in PLS Q2Y.

Data are deleted row-wise
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Evaluation of R2 and Q2

• PRESS is the sum of squared 
differences between predicted and 
observed y-elements.

Q2 > .5 Good (Depending on 
application)

Q2 > .9 Excellent (Depending on 
application)

Important:
1. R2 is always larger than Q2

2. High R2 and high Q2 is good

3. The difference between R2 and Q2

should not be too large

• PRESS can be transferred into a 
dimensionless quantity, Q2, which 
resembles R2

Q2 = 1 - PRESS/SSYtotal

R2 = 1 - SSYresid/SSYtotal

P R E S S ( y y )i m i m= −∑ $ 2
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PLS, Summary
• Modelling: Data tables X and Y are approximated 
by (hyper)-planes + residuals (E, F), and an inner 
relation between U and T 

X 1*x´ T* P' E= + +

Y 1* y´ U*C' F= + +

Calculations: One PLS-dim at a time -- NIPALS

The number of model dim.s (A)
Cross-validation (predictive significance)

Residuals: Std. dev. of X- or Y-residuals of one observation = distance of obs. to 
(hyper)plane in X- or Y-space

Predictions: New obs. projected onto (hyper)-plane in X-space ⇒ X-scores (t) ⇒ inner 
relation ⇒ Y-scores (u) ⇒ C ⇒ predicted Y (and confidence interval)

U = T + H

(H is a residual matrix)
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PLS, Summary
PLS
models the relation between two data 
tables  X --> Y and is used for:

• dominating factors in X and Y
– selection of relevant variables 

(X and/or Y)
• outliers

– in X-space
– in Y-space
– in inner relation (t → u)

• groups, clusters in X and Y

• similarities / dissimilarities
– observations scores, t, and u
– variables loadings, p, and 

weights, w, and c
• predictions

– x → y (what y is obtained by x)
– y → x (how to set x to get y)



Multivariate Data Analysis and Modelling
Basic Course

Chapter 5
Multivariate Characterisation

201/01/2003

Contents

• Introduction to multivariate characterisation
– Each observation is characterised by many variables
– The multivariate data are summarised by PCA (or PLS)

• Example: Solvents

• Example: Surfactants
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Introduction to multivariate characterisation
• Multivariate characterisation is a method of quantifying qualitative -- discrete –

changes

• ⇒ A qualitative change can be described by means of quantitative latent variables
(principal properties)

• Multivariate characterisation is useful when
• Variability is introduced by uncontrolled qualitative factors,

e.g., batches of raw material 
• Qualitative factors have many levels, e.g., choices among

solvents
catalysts
additives
substituents
compounds for biological testing 
stationary phases in HPLC, TLC, GC

401/01/2003

Procedure
• For each varying constituent/ingredient/batch in the system:

1) Measure & calculate a battery of properties using relevant 
model systems (chemical, physical, biological, …) 

This will give you a multivariate data table 

2) Use PCA to derive the “principal properties” for each 
constituent/ingredient/batch

3) Use the resulting PPs as factors to model the changes among 
the observations, and for DOE
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Example: Solvents
• How do we select an appropriate solvent for chemical synthesis ?

• Assumption: solvent “effects” in the “real” system can, at least partly, be seen also in 
well chosen properties

• Example: For 103 solvents, 9 property values were compiled:

– 1) melting point 2) boiling point
– 3) dielectr. const. 4) dipole moment
– 5) refract. index 6) ET30 (λmax of UV of organic dyes)
– 7) density 8) log P
– 9) water solubility
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Solvents - Some results
• PCA gave 2 significant components modelling 70% of the variance
• These two factors, “principal properties”, can be used as quantitative variables for the 

selection of representative solvents

• 1st component reflects hydrophilicity/water solubility; 2nd component reflects 
polarizability
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How to select representative solvents
• 1) Create an experimental design, e.g., 

a fractional factorial design expanded 
with some center-points

• 2) Select solvents with PPs matching 
the design table as closely as possible 
(or use D-optimal design)

DV1 DV2 DV3

Fractional factorial designDV1 DV2 DV3

Full factorial design

- - - + - -
- + - + + -

- - + + - +
- + + + + +

- - -

+ - +
- + +

+ + -
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Example: Surfactants
• Non-ionic surfactants are increasingly used in commercially available detergent 

mixtures
• Lindgren/Uppgård studied non-ionic ethylene-oxide (EO) based surfactants and 

described these using 19 chemical variables
• 38 technical blends (distribution of EOs)

• R is hydrophobic part
- straight chain
- branching
- aromatic
- unsaturation
- etc

(EO)n

R
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Objective of Surfactants study

• The objective of the study was to find a surfactant with good washing 
performance but without undesirable toxicity or biodegradability

• Question 1: Is it possible to quantitatively model the performance of 
technical blends as a function of chemical properties?

• Question 2: Which surfactants should be used as the basis for 
modelling?
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Step 1: Multivariate characterisation

• K = 19 variables (Mw, C, redC, 
redC/C, EOw, HLBG, HLBD, CPP, 
redCPP, CP, dCP, chain, rmchain, f-alc, 
maxEO, w33EO, w66EO, CMC, logP)

• These reflect hydrophobicity, molecular 
weight, branching of R, technical blend 
properties, critical micellar conc., etc.

• PCA of 38 x 19 data matrix 
(R2 = 0.78, Q2 = 0.51, A=3) -6
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Interpretation of model
• PP1 describes lipophilicity and 

shape of EO-distribution
chromatogram

• PP2 accounts for 
hydrophilic/lipophilic balance

• Surfactants in the upper right 
corner are too lipophilic to be 
interesting (these were 
excluded from further 
consideration)

• PC-score plot is a map of 
surfactants
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Step 2: Selection of surfactants for further testing

• The 8 lipophilic 
surfactants were 
excluded, and an 
updated PC-model 
was computed
– R2X = 0.76
– Q2 = 0.52
– A = 3
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Step 2: Selection of surfactants for further testing

• The three PCs (or PPs) describe, 
quantitatively, the change in property 
profile when going from one 
surfactant to another

• Since PPs are mathematically 
independent of one another, they are 
useful as design variables in statistical 
experimental designs
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Step 2: Selection of surfactants for further testing

• Ten representative surfactants providing a reasonable coverage of 
an interesting area in the PP-space were selected

• Selected surfactants: 2,5,8,9,11,30,31,33,37,38
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Step 3: Detergency measurements

• Detergency efficiency was measured as a function of washing 
conditions using design

• For each selected surfactant a CCC design in three factors was set up

• 14C trioleine was used for soiling of cotton/polyester cloths

• Surfactant concentration, washing time and washing temperature were 
varied

• Three responses, optimal YDet, YTemp, and YConc, were determined 
in the 15 min washing experiment
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Step 4: Toxicity measurements

• Toxicity to a fairy shrimp 
(Thamnocephalus platyurus); log LC50

• Summary of performance profiles: 

• Goals: 

Surfact. YDet YConc YTemp YTox
2 86.3 1.4 60 1.29
5 81.8 1.6 48 0.52
8 82.4 1.9 44 0.96
9 81.8 1.5 82 0.55

11 85.4 2.25 54.5 1.25
30 78.8 1.7 48 0.59
31 84.6 2.8 50 1.77
33 88.9 1 74 1.11
37 85.9 2 67 1.52
38 86.5 1.1 61

YDet   ↑ (important) 
YConc   ↓ 
YTemp  ↓ (40-60 °C, important) 
YTox   ↑ (low toxicity, important) 
*  Nos 2 or 37 look promising 
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Step 5: PLS modelling

10

19

19

28

10

4

?
• Develop model from selected training 
set

• Make predictions for test set and 
identify most promising surfactant(s)

• Strong model obtained
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Model interpretation - use scores & loadings

• Strong correlation between chemical data and performance data
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Model interpretation - use scores & loadings

• Strong correlation among responses

Target area (High YTox, High 
YDet and Low YTemp)
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Model predictions

• Predictions can be used to 
identify promising surfactant 
structures, e.g., # 21, 24 & 25

Obs num Ydet Yconc Ytemp Ytox
37 85.9 2.0 67.0 1.5
15 84.6 2.1 54.2 1.2
21 86.3 2.2 56.1 1.8
22 88.1 1.5 70.1 1.6
23 86.7 2.6 51.9 1.9
24 87.8 2.2 59.2 1.8
25 89.7 1.7 71.5 1.7
27 89.6 0.9 83.1 1.3
28 87.1 1.3 71.5 1.2
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Conclusions - Surfactant example

• All surfactants cannot be tested due to lack of time and resources. Multivariate
characterisation and design are useful to select a set of representative 
compounds.

• Surfactant performance is a multivariate property and must be treated as such.

• Strong relationships between measured physico-chemical properties of 
surfactants and their performance profiles.

• Predictions from PLS model identify interesting surfactants for further 
performance optimisation.
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Conclusions - General

• Multivariate characterisation quantifies a discrete change, for instance, 
the shift from one surfactant or batch of raw material to another

• Critical aspect: the surfactant or raw material “effect” in the “real” 
system can only be mapped with a set of well chosen model systems

• Statistical experimental design is an excellent tool for selecting 
representative compounds/items/cases based on a multivariate 
characterisation





Multivariate Data Analysis and Modelling
Basic Course

Chapter 6
Multivariate Calibration
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Contents
• Six main steps of multivariate 

calibration

• Training, test & prediction sets

• Calibration – A short review

• Problems with traditional calibration
- selectivity
- precision
- diagnosis

• Multivariate calibration
- many signals
- multivariate space

• Example: SUGAR

• Signal correction

- Orthogonal Signal Correction, OSC
- Multiplicative Signal Correction, MSC
- Standard Normal Variate, SNV
- Derivation (1st and 2nd derivatives)



316/04/2003

Six main steps of multivariate calibration
1. Specification of the analytes with concentration ranges

2. Selection of a representative calibration set (training set)

3. Measurement of spectra (X) – The analyte concentrations are measured with the 
reference method (Y)

4. Evaluation of raw data (outliers) and pre-processing (filtering and compression)

5. Calculation of the calibration model (review of fit, interpretation)

6.    Prediction of analyte concentrations in new samples (prediction set)

Reference: Wold, S., and Josefson, M., Multivariate Calibration of Analytical Data, in: Meyers, R., 
A., Encyclopedia of Analytical Chemistry, John Wiley & Sons Ltd, 2000, pp. 9710-9736.
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X Y
New samples ?

Training, test & prediction sets

• Steps 1- 5 comprise the 
training phase

• Step 6 is the prediction 
phase

• When predictive power 
is satisfactory the 
calibration model is 
applied to new samples
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Two calibration situations

• Reference samples can be prepared with desired levels of analytes and 
interferents
– DOE is useful to make reference samples of known composition
– Typically a full or fractional grid design with many levels

• Samples are collected from the system, and are analysed by a reference 
method
– Many samples (30 – 100) are needed to ensure proper spanning of all properties
– Selection depends on situation (e.g., location or batch, see next slide)
– Or use multivariate characterisation and design in principal properties to select 

representative spectra (see, e.g., Svensson, O., PhD Thesis, Gbg Univ., Sweden)

616/04/2003

Selection of samples - continued

• Natural samples, e.g., wheat, lake-water, peat etc., base on geography
– If prediction only within given locations:

• Select training samples from all locations
• Sort by Y; even = training, odd = test   / with many Y make a design in Y

– Prediction of results at new locations (most common case)
• Training samples from locations A – O that cover the whole area
• Test samples from locations P – Z

• Industrial samples, base on batch
– If prediction only within given batches (or continuous process)

• Select training samples from all batches
• Sort by Y; even = training, odd = test  / with many Y make a design in Y

– Prediction of results of new batches (most common case)
• Training samples from batches A – O, spread over time and other relevant properties
• Test samples from batches P – Z
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Calibration – A short review

1) Samples with known concentrations (ci) are 
measured on an instrument
– Resulting signal amplitudes (Ai)
– Standard curve

2) New samples with unknown concentrations
– Measurements ⇒ signal amplitudes, Aj

– ⇒ estimated concentration values, cj
(via standard curve)

A

C

A

C
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Problems with traditional calibration

• Selectivity: there is NO frequency
where ONLY the analyte absorbs

• Precision: noise in signal amplitude 
transmits to the estimated concentration 
of a new sample

• Diagnosis: standard curve valid ONLY 
for samples similar to the calibration 
samples

S

f

A
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Multivariate calibration
• Many signals (spectrum digitised at K different 

wavelengths already in the instrument)
⇒
K variables
K signals

• Multivariate space
- Each wavelength defines one co-ordinate axis
- Space with K axes
- Points, lines, distances, ..., have similar properties 
in K as well as in 2 and 3 dimensions

S

f
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Multivariate calibration

• One analyte:

- all points (digitised spectra) are situated on a 
line ± noise (Lambert-Beer’s ”law”)

• one analyte + interacting compounds, or
several analytes + interacting compounds:

- all points are situated on a hyper-plane ± noise 
in K-space



1116/04/2003

Application areas
• Wheat, corn, ... Protein, water, fat NIR
• Peat, coal Water, energy, sugars, C, N, S NIR
• Lake water Humic acids, lignin sulfonate Fluorescence
• Beer, wine alcohol, protein, sugars, etc. NIR, IR
• Whisky, wines Taste, smell, “quality” GC, HPLC
• Cellulose, paper Raw material, lignin, paper char. NIR, UV, IR, NMR
• Pigs (living) Fat, meat etc. X-ray
• PAH UV, NMR
• Pharmaceutical apps. Drug compounds & metabolites UV-vis, FT-IR, NIR
• Process quality Sensors, NIR, NMR
• + many, many more
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Example: Sugar
• Data: Fluorescence measurements on white sugar, the final product in the sugar 

production, dissolved in phosphate buffered distilled water
• 106 samples, 571 X-variables
• Excitation: 240 nm, Emission: 275-560 nm 
• Response: Impurity (”ash content”)
• Reference: Rasmus Bro, "Håndbog i Multivariabel Kalibrering”

• Plot of spectra
(the X-data):

Sample 88
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PCA modelling

• PCA of unscaled and centered data shows problems in the beginning of 
the process; stabilisation from around sample 15; sample 88 probable 
outlier
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Scaled or unscaled data?
• Two independent spectral contributions are found in data – results of unscaled data are 

easier to interpret

p1, unscaled data, 
has structure and 
resembles average 
spectrum

p2, unscaled data, 
also carries 
structure, peak-
like shape

p1, scaled data, 
does not mimic 
the average 
spectrum

p2, scaled data, 
with a peak
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PCA on 90 observations

• Start-up phase and the outlier 
have been eliminated

• The two main clusters are 
preserved

• No long-lasting period of 
consistenly high DModX´s 

• No new sub-clusters or strong 
outliers emerge

• Conclusion: It is reasonable to apply PLS to these 90 observations! 
Gives a good spanning of Y.
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PLS - modelling of reduced data set

• 16 samples were removed (Nos 1 - 15 + 88)

• 90 samples remained, which were divided in two sub-groups

• Models were computed for each sub-set

• Model validation strategies:
– Internal validation (cross-validation, Q2

int)
– Response permutation testing (”Validate”)
– External validation (RMSEP, Q2

ext))
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PLS - modelling of reduced data set

• Results of  cross-
validation 
indicate Q2

int in 
the order of 0.8

• External 
predictions 
indicate RMSEP 
in the order of 
0.00010
(↔ Q2

ext ≈ 0.8)
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Response permutation test - "Validate"
• To check whether the existing model is 
the best predictive alternative and the 
degree of overfit
• Rules of thumb: Y-axis intercepts 
R2 < 0.3, and Q2 < 0.05
• If the R2-line is close to horizontal, this 
test indicates model overfit

/ Factors Responses
/ 1 2 3 4 Randomise wrp1 in new columns
ONu
m

glas crtp mic
a

amtp / wrp1 Wrp1:1 Wrp1:2 Wrp1:3

1 40 10 10 40 0.9 3.7 0.6 0.3
2 20 20 0 60 3.7 0.6 3.6 0.6
3 40 20 0 40 3.6 0.3 1.2 1.2
4 20 20 20 40 0.6 1.2 0.3 3.7
5 20 10 20 50 0.3 0.9 0.9 3.6
6 40 0 20 40 1.2 3.6 3.7 0.9

wrp1
A=1 A=2

A=3 A=4
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Validate applied to SUGAR models

• Validate – excellent results, i.e., calibration models are valid
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Summary of initial PCA/PLS modelling
• Scaled or unscaled spectral data?

– Unscaled data (”centered but not scaled”) easier to interpret

• Marked drift in the process ⇔ start-up variation
– Unrepresentative samples should be removed (1 – 15 + 88)
– 90 observations remained

• Cross-validation and dependency among adjacent observations
– Data were sorted to break the auto-correlation structure (Note: good solution for our 

modelling efforts, but not necessarily for long-term process monitoring)

• External predictions
– To enable external predictions data were split in two groups, odd- and even-numbered
– External Q2 > 0.8 for both groups

• Conclusion: Fluorescence data allow for reliable on-line prediction of ash content
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Signal correction (“filtering”) of SUGAR data
• Signal correction can be used to pre-process data and remove systematic unwanted 

behaviour, such as baseline variation and multiplicative scatter effects

• Problem 1: risk of removal of variation in X that correlates with Y

• Problem 2: risk of over-training of model

• Spectral filters applied to SUGAR data: 
- Multiplicative Signal Correction, MSC

(Geladi & Martens, 1985)
- Standard Normal Variate, SNV

(Barnes, 1989)
- Orthogonal Signal Correction, OSC

(Wold, 1997)
- Derivation (1st and 2nd derivatives)

2216/04/2003

Spectral filters in SIMCA

• MSC: Each digitised 
spectrum (xi´, row-vector 
in X) is regressed against 
the mean spectrum (m): 

xik = ai + bimk + eik

• From each spectrum one 
subtracts the intercept 
(ai) and divides by the 
slope (bi): 

xi,corr´ = (xi´ - ai) / bi

Spectrum A

Mean Spectrum

N

K
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Spectral filters in SIMCA

• SNV: Same mathematical form as MSC
- Parameters ai and bi are calculated as the average and standard deviation of the ith

row of X; Corresponds to row-centering and normalisation

MSC and SNV are baseline corrections which
remove additive and/or multiplicative effects!
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Spectral filters in SIMCA

• Orthogonal Signal Correction, OSC

- Calculate first PC of X ⇔ score t
- Orthogonalise t with regards to Y
- tOSC = (1-Y(Y´Y)-1Y´)t
- Some NIPALS steps to give weights (w*), and 

updates of tOSC and t, until convergence
- Subtract correction E = X - tOSCp´
- One or two OSC components recommended
- Work with one response at a time

• OSC uses information in Y to construct a filter of X

• MSC and SNV work only with X, and may remove 
predictive information from X

X

t osc

p’ osc

Y

E = X t p’- *

E YPLS

OSC
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Spectral filters in SIMCA

• 1st derivative spectrum
– Provides the slope at each point of the original spectrum
– Has peaks where the original spectrum has maximum slope and it crosses zero where the 

original has peaks
– Removes additive baseline (”offset”)

• 2nd derivative spectrum 
– Measures curvature at each point in the original spectrum. 
– Is more similar to the original spectrum and has peaks approximately as the original 

spectrum, albeit with an inverse configuration 
– Removes a linear baseline

• Problem: May reduce the signal and increase the noise ⇒ noisy spectra
• Savitsky and Golay (SG) smoothing

– SG-derivatives are based on fitting a low degree polynomial (quadratic or cubic degree) 
piece-wise to the data, followed by calculating the first and second derivatives
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Results of signal correction (SUGAR)
• Procedure:

1) Reduced data set (90 observations)
2) Sorting and splitting of data preserved 
3) Standard PLS, and OSC, MSC, SNV & derivatives are compared
4) Models trained on odd and tested on even, and vice versa
5) External validation RMSEP and Q2 used to evaluate predictive power

20.000.0025820.000.002232nd Der.
20.730.0012220.810.001111st Der.
50.430.0016050.430.00163SNV
50.330.0017350.360.00174MSC
10.820.0009410.850.00084OSC1
20.800.0009920.830.00090PLS
A(e)Q2

ext(e)RMSEP(e)A(o)Q2
ext(o)RMSEP(o)Model

OSC1-PLS works equal to or better than PLS!



2716/04/2003

Results of signal correction (SUGAR)
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Results of OSC1-PLS model (Train even/Test odd)
• 31% SS removed by OSC

Examine OSC-loading
(what was subtracted?)

Near perfect correlation 
between X and Y for the 

training set
Observed/predicted 

for the test set

• OSC training set picture is exaggerated. OSC predictions still good.
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Results of OSC1-PLS model (Train even/Test odd)

• Conventional PLS
– RMSEP = 0.00099
– Q2

ext = 0.80 (A = 2)

• OSC1-PLS
– RMSEP = 0.00094
– RMSEP lowered by 5%
– Q2

ext = 0.82 (A = 1)
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Conclusions of SUGAR example

• We can make a predictively sound calibration model for impurity with 
predictive power above Q2 = 0.80

• Fluorescence is a relevant technique in this application

• OSC gives a slight improvement in predictive power
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Conclusions - Multivariate calibration

• PCA is an informative modelling tool prior to PLS analysis

• External validation of predictive power is extremely important (be 
aware of auto-correlation among time points in process data!!!!)

• Signal correction is useful to remove undesired systematic behavior in 
X-data

• SNV and MSC may remove variation from X that correlates with Y

• OSC removes variation from X that does not correlate with Y
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Discussion - Representative calibration samples

• The uncertainty of predictions for a given signal increases rapidly 
outside the range spanned by the calibration samples. Hence, the 
calibration model should not be applied far outside this range.

• The best training set is obtained if a design is made in all factors 
relevant for the calibration, but this is often difficult.

• When DOE is not possible, a sampling where samples are selected to
cover the major sources of variation is the best strategy
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• Modelling a process output
– A mineral sorting plant
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Process Data Analysis - Purposes

1. Monitoring the state of the process, statistical process control (SPC)
– Early warning
– Diagnostics - finding ”assignable causes” (SPC jargon ⇔ interpret deviations)

2. Understanding the relationship between
– input variables, X (process data) and output variables, Y (product quality, cost, 

amount, ...)

3. Optimisation
– Use process models to improve process

401/01/2003

• 50 years ago
– Few variables: T, P, flows

• Today
– Many measurements and very often
– Large data sets
– The latent variable concept

• Process the same

• Data have changed
– K = 5 → 500
– N = 10 → 1000

The Problem

Typical process (from MacGregor et al. 1991)
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Process applications

• Monitoring a process
– A chemical production plant
– PROC1A

• Modelling a process output
– A mineral sorting plant
– SOVR

The process

X

Quality

Y

The process

X
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Example - Monitoring (PROC1A)

• A chemical production plant
– A continuous steady state process
– All data are coded, not to reveal any trade secrets

• The data - 33 variables, 92 observations
– 7 controlled process variables (x1in-x7in)
– 18 intermediate process variables (x8md-xpen)
– 8 output variables (y1-y8)
– Data sampled during 92 time units (e.g. hours or minutes)

• The process went out of control around time 80 and had to be shut 
down at time 92
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Example - Monitoring a process (PROC1A)

• Questions:
– How can we quality control the data?
– How can we use these data to get an overview of the state of the process?
– Do we see trends, groups of observations?
– Can we detect changes in the process over time?
– Can we detect sudden upsets in the process?

• We will use PCA modelling to address these questions

801/01/2003

PROC1A – Time series plots of raw data
Just plotting the raw data does not reveal anything particular at time = 80
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PROC1A – Overview PCA model
Model and understand the data
• Always start with an overview of the 

data

• Variable inspection indicated no need 
for transformation

• Calculate two first PCs
– for overview this is usually sufficient

• The score plot reveals a clear trend in 
the data towards the end
– All observations after process upset 
behave differently 
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PROC1A – Modelling normal behaviour

Select observations representing normal operating conditions
• From the process engineer we know that the process was behaving normally until

around time 70 and was definitely out of control at time 80
• Remove observations 70 - 92

Model the normal process behaviour
• Make a PCA on the 69 first observations

– Use cross-validation to indicate the number of PCs
– Three significant components in PROC1A, modelling 51% of the variability

• Using the historical data (observations 1-69) one can define areas or intervals where 
process seems to be in control
– These limits can then be used when monitoring the process
– Multivariate Statistical Process Control, MSPC
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PROC1A – Monitoring the process
• Projecting the new data onto the model 

clearly indicates the process upset 
around time 80

• In the DModX-plot we can see that 
most of the observations (before time 
70) are below the critical distance
– However, number 33 is somewhat high 
and will be investigated further
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PROC1A – Contribution plots
Identifying contribution of variables
• Process changes detected in scores

– Observation 80 and all thereafter are 
deviating from normal behaviour

• Contribution plot (Scores)
– Identifies changes in variables, relative 
to the average or to a normal observation
– Which variables are contributing to the 
difference between observation 80 and the 
average observation?

• Contribution = ∆X * weight
– weights: None, p, pp, RX
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PROC1A – Contribution plots
Identifying contribution of variables
• Process changes detected in DModX

– Observation 33 is deviating from normal 
behaviour

• Contribution plot (DModX)
– Identifies the abnormal values or patterns 
in the variables causing the large residuals
– Which variables are contributing to the 
large residuals in observation 33?

• Contribution = ResX * weight
–weights: None, RX
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PROC1A – Summary

• Monitoring the new data
– The process upset around time point 80 was easily detected
– Observation 80 was projected outside the tolerance ellipse (Hotelling’s T2)

• Interpreting the deviations
– The contribution plot showed that the problem was to be found in a number of 

variables
• e.g. x1In, xemd, xgnx, xoen, and xpen were all too low

• Summary
– The process upset was easily detected at an early stage by using PCA and MSPC
– The possible variables related to the problem was identified
– The problem might have been corrected by the operator if seen in time
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Example - Modelling the process output (SOVR)

• A mineral sorting plant
– A continuous dynamic process
– Presence of feedback control
– Many responses to consider

• Raw iron ore is divided into finer material by grinders. The material is 
sorted and concentrated by magnetic separators. Concentrated material 
is divided in two products
– PAR that goes to a pelletization process
– FAR (fines) that is sold as it is

• The primary goal was to identify the most important process factors and 
set up a prediction model to use on-line
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Example - Modelling the process output (SOVR)

• The Data - 18 variables, 572 observations
– 3 manipulated process (input) variables
– 9 intermediate process (input) variables
– 6 output variables
– X-data were from process log (minutes)

• DOE was used
– A CCC design in two levels
– 14 runs + 3 centre points

• The output (or quality) variables were sampled and analysed in the 
laboratory once for each design setting
– Each output measurement was then preserved for 20 minutes to capture normal 

process variation (variations in the X-block)  
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Example - Modelling the process output (SOVR)

• Questions
– Can the data be used to model the process?
– Is it possible to monitor and identify process upsets?
– Are there trends, groups, different states of the process?
– Can we understand the relationship between input and output variables?
– Can we make predictions?

• We will use PCA and PLS modelling to address these questions
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SOVR - The overview model

• The first two PCs were 
calculated using all data in order 
to get a good overview of the 
data

• The PC-model reveals clustering 
induced by the experimental 
design changes

• Two of the clusters deviate to the 
left in the score plot
– Why?
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SOVR - The overview model
• The answer to why the two clusters 

deviate in the score plot can be found in 
two ways. First the more general 
information
– Loading plot

• For a more specific answer we ask the 
model: Which variables contribute to 
the change from an average sample to 
one of the samples in the clusters?
– Contribution plot
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SOVR - Overview selected observations
• A new PC-model with selected 

observations was made
– 5 observations from each of the 17 
design points were selected

• The new PC-model made on the 85 
selected observations and all variables 
clearly shows a clustering
– the process is stable in all the design 
points
– the centre points are well reproduced

• These 85 observations will be used in 
the following PLS-model
– PLS-model with expanded terms
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SOVR - The PLS-model
• Cross-validation indicates 6 PLS-

components
– R2Y(cum) = 0.84, Q2(cum)= 0.81

• Most of the output variables are well 
explained by the model
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SOVR - Analysing the PLS-model
• The inner relationships and DModX are OK
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SOVR - Interpreting the PLS-model
• The t1/t2 score plot looks as expected • In the corresponding loading plot we 

can assign properties to the components

Throughput

Q
uality

• Observations in the 4th quadrant combine high throughput and high quality
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SOVR - Interpreting the PLS-model
• The VIP-plot shows how important 

each input variable is to the total model
– All outputs, all PLS-components

• The coefficient plots show how the 
input variables affect each individual 
output (here; %P_FAR)
– Individual outputs, all PLS-components
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SOVR - Interpreting the PLS-model
• The influence of an input variable can 

be visualised in a contour plot 
• Note: A correct contour plot can only 

be created for input variables varied 
according to DOE
– Causality versus correlation

• A new PLS-model was calculated with 
only the 3 manipulated input variables
– 3 manipulated input variables
– 6 interaction & square terms
– 6 output variables

• 4 significant PLS-components
– R2Y(cum) = 0.74, Q2(cum)= 0.68

• The only output that was modelled
worse by this reduced model was, as 
expected, %Fe_malm (% Fe in 
incoming ore)
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SOVRING.M7 (PLS), PLS only with designed X-variables
%P_FAR, Comp 4

SOVR - Interpreting the PLS-model
• The coefficient plot for %P_FAR 

shows almost identical relationships as 
the first PLS-model

• With the contour plot it is easier to 
interpret the effects of combined factors
– here HS_2 and Ton_ in (HS_1 kept at its 
centre value)

For each Ton_in, there is an optimal HS_2
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SOVR - Summary

• For prediction and monitoring purposes use the first PLS-model
– The online measurements enable online predictions
– The correlation structure stabilises the model and the predictions
– For early fault detection it is also better to use more process parameters in the 

model, as more types of problems can be detected

• One interesting output to make online predictions for is the Iron content 
in the incoming ore (%Fe_malm)
– Very difficult to get representative samples for analysis
– When %Fe gets too low in the incoming ore, the process engineer must inform the 

miners
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Modelling process output - Summary

• Collect data from process
– Use experimental design if possible

• Use PCA to select data to use in PLS-model
– Remove unwanted process situations from data

• Make PLS-model
• Use model for on-line predictions of final quality
• Use model for understanding and optimisation

– Cause and effect relationships only with experimental design



Multivariate Data Analysis and Modelling
Basic Course

Chapter 8
Conclusions
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Combine DOE and multivariate data analysis

• In many process applications the system can be characterised by 
inherent, latent variables, which are few compared with the number of 
observed variables.

• Multivariate projection methods find the important LVs. These LVs 
become more stable the more relevant variables are included.

• Processes are monitored and responses are predicted by means of the 
latent variables.

• The process world is multivariate - use multivariate 
methods! Capture the essentials in a few plots!
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Use DOE to improve/optimise products and processes

• High quality, efficiency and consistency are defining characteristics of  
a successful organisation

• DOE is the most efficient means of achieving these objectives

• DOE leads to savings through
– shorter lead times
– optimal raw material use/less waste
– fewer product defects
– less pollution
– efficient operating conditions
– ...

DOE leads to earnings through
higher quality products
increased throughput
new and innovative products
...
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Key features of DOE

• How to make experiments efficiently
– Span the experimental domain with the aid of a suitable experimental design

• How to analyse the data
– Use good statistical tools to evaluate experimental results

• How to interpret the results
– With the use of user-friendly PC-based graphical facilities

• How to convert modelling results into concrete actions/decisions
– MODDE optimiser & verifying experiments
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Umetrics has the Solution

• We can offer a solution to almost any multivariate problem.

• Umetrics has consultants with a wide range of experience and 
expertise, ready to advise, assist, or lead your projects.

• Umetrics is committed to staying ahead in the fast developing field 
of multivariate methods. 

• Our knowledge and experience are continuously transferred into 
our software products and courses.
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Multivariate Methods - a Total Concept from Umetrics

• Products
– MODDE: is our state-of-the-art DOE software
– SIMCA-P: for off-line modelling and execution
– SIMCA-4000: for on-line execution in connection with your PCS
– SIMCA-Batch OnLine: for on-line execution of batch processes

• Courses
– Umetrics Academy offers a wide range of courses, from beginners to advanced 

users

• Consulting
– Profit on our knowledge to speed up your projects

• On the Web
– Get the latest news and links at our web-site: www.umetrics.com





Multivariate Data Analysis and Modelling
Basic Course

Chapter 11
Additional Topics I - Pre-processing Methods
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Contents

• Scaling and Centering
– Unit variance, Pareto, and No scaling; With and without mean-centering
– Set point centering & Control/Action limit scaling
– Block-scaling, Double centering, …

• Transformation and Expansion of data

• Signal Correction and Compression
– Orthogonal signal correction, OSC
– Multiplicative signal correction, MSC
– Standard normal variate correction, SNV
– Derivatives
– Wavelet analysis



Scaling and Centering
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Contents
• Mean-centering and scaling to unit variance

• Mean-centering but no scaling

• Block-scaling

• No centering, but scaling

• Set point centering & Control/Action limit scaling

• Double centering (“Correspondence analysis”)

• Scaling procedure in SIMCA
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Mean-centering and scaling to unit variance

• The most common scaling type. All variables are scaled to unit variance

• Useful when variables are of different kinds and not directly comparable 

• Problems: 
– If a large number of variables have low variation, UV-scaling will blow them up

• typical example: Spectral data
– The absolute variation will be lost

• typical examples: Spectral data and COMFA 
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Example: Mean-centering and UV-scaling

• UV-scaling is easiest understood by comparing the results from scaled 
and unscaled data

• Example: NIRKHAM, using the sugar data as X in PLS
– with UV-scaling all variables have equal chance to contribute to the model
– without scaling the importance of Glu is increased

• The SD for Glu is about 6 times larger than the others

Rha_s Fuc_s Ara_s Xyl_s Man_s Gal_s Glu_s
0.84 0.18 1.04 0.92 0.64 0.80 6.79
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Example: Mean-centering and UV-scaling

• The effect of scaling on R2

and Q2 might be minor, but in 
principle a higher Q2 is 
advantageous

• Above: UV-scaling (and 
mean-centering)

• Below: No scaling (but mean-
centering)

0.00

0.20

0.40

0.60

0.80

1.00

Comp[1] Comp[2] Comp[3]

Comp No.

Nirkham.M1 (PLS), PLS UV R2Y(cum)
Q2(cum)

0.00

0.20

0.40

0.60

0.80

1.00

Comp[1] Comp[2] Comp[3]

Comp No.

Nirkham.M2 (PLS), PLS Ctr R2Y(cum)
Q2(cum)

809/12/2002

Scaling influences variable importance

• UV-scaling, and mean-
centering: All variables have 
had the same chance to 
influence the model

• No scaling, but mean-
centering: Often, the variable 
with the highest SD will get 
too much influence 0.00
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Mean-centering but no scaling

• This kind of pre-treatment is particularly useful when

– all variables are of the same kind and their numerical size and intrinsic variation 
carry information

• Examples
– spectral data, like UV, NIR, fluorescence
– CoMFA
– questionnaires
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Example: Sugar (Mean-centering but no scaling)
• Data: Fluorescence measurements on white sugar, the final product in the sugar 

production, dissolved in phosphate buffered distilled water
• 106 samples, 571 X-variables
• Excitation: 240 nm, Emission: 275-560 nm 
• Response: Impurity (”ash content”)
• Reference: Rasmus Bro, "Håndbog i Multivariabel Kalibrering”

• Plot of spectra
(the X-data):

Sample 88
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PCA modelling

• PCA of unscaled and centered data shows problems in the beginning of 
the process; stabilisation from around sample 15; sample 88 probable 
outlier
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Scaled or unscaled data?
• Two independent spectral contributions are found in data – results of unscaled data are 

easier to interpret

p1, unscaled data, 
has structure and 
resembles average 
spectrum

p2, unscaled data, 
also carries 
structure, peak-
like shape

p1, scaled data, 
does not mimic 
the average 
spectrum

p2, scaled data, 
with a peak
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Summary: No, Pareto, and UV-scaling

• No scaling (but mean-centering): Useful when all variables are 
expressed in the same unit, such as with spectroscopic data

• UV-scaling (and mean-centering): Useful when variables are of 
different kinds and not directly comparable 

• Pareto scaling (and mean-centering): Intermediate between the extremes 
of no scaling and UV-scaling. Gives each variable a variance 
numerically equal to its initial standard deviation instead of unit 
variance
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Block-scaling

• Block-scaling is used with blocks of different kinds of variables, 
Example: Questionnaire about health 
– 10 questions about physical exercise
– 30 questions about food consumption
– 5 questions about tobacco and alcohol
– 3 measured variables: weight, blood pressure and cholesterol

• The three measured variables probably carry more information than the 
others, but will be masked by the variation of the others

• Problem: How to do block-scaling is both dependent on the number of 
variables in each block, the importance of the variables, and correlation 
between the variables
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Example: Block-scaling (Z-Scales of amino acids)

• Hard block-scaling: Unit variance for all blocks
– Multiply each variable weight by 1/(Kblock)0.5, where Kblock denotes the number of 

variables in a block

• Soft block-scaling: Scale each block to have a variance equal to the 
square root of the number of variables in that block
– Multiply each variable weight by 1/(Kblock)0.25

– This is the recommended procedure

• In Z-scale we have
• 9 HPLC variables ⇒ sqrt (9)
• 20 other single variables ⇒ sqrt (1) per variable
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Example: Block-scaling (Amino acids)

• UV-
scaling
& soft 
and 
hard 
block-
scaling

• Score 
plots 
do not 
change 
much!!
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No centering, but scaling

• Why? Sometimes 
mean-centering will 
remove the interesting 
effect

• Example: KROPPAR 
with paired subjects

• PCA of scaled & 
centered data
– Each subject appears 

twice, before (F) and 
after (E) treatment

– One arrow per subject
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No centering, but scaling

• A better approach is to convert 
the original data-set to a data-set 
of differences

• Then each subject appears only 
once

• A PC model can be made with 
the variables UVN scaled 
(scaled relative to zero (no 
treatment effect) and not 
centered)

• If there were no treatment effect 
the subjects would appear as a 
cluster around origin Subjects have moved to the right along 

the t1-axis. 
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No centering, but scaling

• The loading plot shows 
that variables like 
cholesterol (CO) and 
body-mass-index (BM), 
have been reduced, and 
that variables like 
physical fitness (TV) and 
HDL blood lipids (HD), 
have been increased with 
respect to before and after 
the treatment

-0.40

-0.30

-0.20

-0.10

0.00

0.10

0.20

0.30

0.40

-0.30 -0.20 -0.10 0.00 0.10 0.20 0.30
p[

2]

p[1]

HEALTHDIF.M1 (PCA-X), PCA UVN
p[Comp. 1]/p[Comp. 2]

 

AGSX

BSBD

HD

TR
CO

BM

TV

HF HSHT

HA

ST

EB
FF

SS

GF

RV
GÅ

IH
KB

PBPV
ILSB

SVSQ

SASE

TS

SHIS

RS

AS

LV

TY
AC

AKAF
AV

LE ED

2009/12/2002

No centering, but scaling

• Contribution 
plot of subject 
21

• TY represents 
difficulty in 
breathing 
(subject breaths 
much easier 
after treatment)
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No centering, but scaling

• Conclusions:
– We can see that a reduction in blood pressure is correlated with reduction in 

body-mass-index (BM), cholesterol (CO), and increase in HDL blood lipids 
(HD)

– If the variables were mean-centered, the main effect of the treatment would not 
be seen in the model plots. Then the model would not explain the changes 
themselves but only the variability in the changes.
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Set point centering & Control/Action limit scaling

• In process modelling an alternative to mean-centering and UV-scaling 
involves 
– centering with regards to the set-point of the process and 
– scaling according to the limits defined as control and/or action limits.

• Set-point centering allows the process operator to focus on the 
variability around the set point and not around the average point.

• Control or action limit scaling might produce a more realistic model of 
the process, especially in the case when a number of variables happen to 
display a variation that is much smaller than their normal variation 
range.
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Double centering

• Often called correspondence analysis; CA is similar to PCA with a 
specific pre-treatment of X (row and column-centering)

• Typical example is to generate a map from a distance matrix

ATA
LANTA

CHI
CAGO

DEN
VER

HOUS
TON

LA MIA
MI

NEW
YORK

SAN
FRAN

ATLANTA 0 587 1212 701 1936 604 748 2139
CHICAGO 587 0 920 940 1745 1188 713 1858
DENVER 1212 920 0 879 831 1726 1631 949
HOUSTON 701 940 879 0 1374 968 1420 1645
LA 1936 1745 831 1374 0 2339 2451 347
MIAMI 604 1188 1726 968 2339 0 1092 2549
NEWYORK 748 713 1631 1420 2451 1092 0 2571
SAN
FRANCISCO

2139 1858 949 1645 347 2594 2571 0
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Example of Correspondence Analysis

• CA is mostly used for 
species abundance data 
in eco-toxicological 
monitoring

• Hypothetical example: 
Typical uni-modal 
evolution of two species, 
1 and 2, for eight 
measuring stations along 
a pollution gradient, e.g., 
outside an offshore oil 
production site
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Example of Correspondence Analysis

• Abundances of the two 
species 1 and 2 plotted 
against each other for 
the eight measuring 
stations

• First PC is represented 
by the dotted line

• Problem: An inversion 
of the measuring stations 
occurs along the 
concentration gradient

• “Horseshoe effect”
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Example of Correspondence Analysis

• Plot of the transformed 
species counts against 
each other, which were 
obtained through CA

• No inversion of sites
• CA is particularly useful 

for “species abundance 
data”

• Reference: B. Massart, 
Ph.D. Thesis, University 
of Bergen, 1997.
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Scaling procedure in SIMCA

• The scaling weight of 
a variable can be seen 
as the product of 

– A base weight
– A block-scaling weight
– A modifier
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Scaling procedure in SIMCA - Base weight
• UV: Variable j is centered and scaled to "Unit Variance", i.e., the base weight is 

computed as 1/sdj, with sdj being the standard deviation of variable j computed around 
the mean

• UVN: Same as UV, but the variable is not centered
• Par: Variable j is centered and scaled to "Pareto Variance", i.e., the base weight is 

computed as 1/sqrt(sdj). Pareto scaling is in between no scaling and UV scaling and 
gives the variable a variance equal to its standard deviation instead of 1.0

• ParN: Same as Par, but the variable is not centered 
• Ctr: The variable is mean-centered but not scaled
• None: No mean-centering or scaling (ws = 1)
• Freeze: The variable is centered and the scaling weight of the variable is frozen (will 

not be re-computed when observations in the work-set change)
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Scaling procedure in SIMCA - Block-scaling weight

• Hard block-scaling: 1/sqrt(Kblock):
– This gives the whole block a variance equal to 1

• Soft block-scaling: 1/(4th root (Kblock)):
– This gives the whole block a variance equal to the square root of Kblock

• Kblock = number of variables in the block

3009/12/2002

Scaling procedure in SIMCA - Modifier

• A modifier (default = 1) is utilized to scale variables up or down relative 
to the base scaling weight

• When the variable is not blocked (the block scaling weight is equal to 1) 
and when the modifier is equal to 1, the base weight is equal to the 
scaling weight



Transformations
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Finding variables to transform in SIMCA 

• Use Workset 
Statistics to 
create a table 
with min/max 
and skewness, or 
skewness test

• Coupling of 
min/max and 
skewness good 
for finding the 
need for 
transformation
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Min/Max-ratio

• Look at ratio min/max.
– When |Min/Max | < 0.1, SIMCA-P issues a warning (red colour)

• Make a histogram of a suspicious variable
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Skewness and Skewness test

• SKEWNESS (- measures lack of symmetry of a distribution)

= N1/2 Σ(xi – xbar)3 / [Σ(xi – xbar)2]3/2

• Skewness Test (– skewness statistic weighted for N)

= Skewness/(sqrt( 6*N*(N-1)/ ((N-2)*(N+1)*(N+3))

• When ABS (Skewness Test) ≥ 2, SIMCA-P issues a warning 
(red colour)
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When to transform and how - Rules of thumb

• Why transform?
– Makes variables fairly symmetrically 

distributed
– Gives simpler models with fewer 

dimensions
• Which transform?

– A natural zero and min/max  <  0.1, 
use log

– Alternative to log is 4th root
• Percentages

– < 15% use log
– > 85% use log (100-y)
– With values from 5-95 use logit
– logit = log [(0+y)/(100-y)]

• Known theory
• Hydrogen ion concentration, use log 
(pH)
• Size of  rust-spot in mm2, use square 
root

• How to evaluate effects of a 
transformation?

• Answer: (R2) Q2

• The Q2 value should increase
• The R2 value should not decrease too 
much
• Data and residuals should get more 
normally distributed
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Distributions and proposed transformations

1. No Transf.
2. Log
3. NegLog
4. Logit
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Example: Multivariate Biological Profiling of 40 Neuroleptics

• Neuroleptic compounds 
exhibit a variety of 
pharmacological activities

• 40 Neuroleptics were 
studied in twelve pharma-
cological tests in rat. 

• Is it possible to classify 
these substances
according to some kind of 
activity profile?

• PCA for overview of the 
40x12 data table gave:
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Example, 40 Neuroleptics

• Why do compounds # 
2, 31 and 40 deviate 
so much?
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Contribution plots for observations 31 & 2

• Obs 31 is higher in variables 1-3, 
and 5-7 than the average obs.

• Obs 2 differs from the average in 
variables 8, 9, and 12.

-2

-1

0

1

2

3

4

5

6

C
at

al
ep

sy

Am
ph

et
am

in

Ju
m

pi
ng

Bo
x

Ap
om

or
ph

in

W
ei

gh
tG

ai
n

R
ea

rin
g

Am
bu

la
tio

n

N
or

ep
in

ep
h

Ep
in

ep
hr

in

Tr
yp

ta
m

in
e

Pt
os

is

Tr
au

m
Sh

oc
k

Sc
or

e 
C

on
tri

b(
O

bs
 3

1 
- A

ve
ra

ge
), 

W
ei

gh
t=

p1
p2

neuro.M1 (PCA-X), PCA no transform
Score Contrib(Obs 31 - Average), Weight=p[1]p[2]

-2

0

2

4

6

8

10

C
at

al
ep

sy

Am
ph

et
am

in

Ju
m

pi
ng

Bo
x

Ap
om

or
ph

in

W
ei

gh
tG

ai
n

R
ea

rin
g

Am
bu

la
tio

n

N
or

ep
in

ep
h

Ep
in

ep
hr

in

Tr
yp

ta
m

in
e

Pt
os

is

Tr
au

m
Sh

oc
k

Sc
or

e 
C

on
tri

b(
O

bs
 2

 - 
Av

er
ag

e)
, W

ei
gh

t=
p1

p2

neuro.M1 (PCA-X), PCA no transform
Score Contrib(Obs 2 - Average), Weight=p[1]p[2]

4009/12/2002

Example, 40 Neuroleptics

• Abs (Skewness Test) > 1.5 is an indication that a variable ought to be 
transformed. A related criterion is if | Min/Max | is < 0.1. 

• All 12 variables are candidates for log-transformation
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Transformations in SIMCA

• Mark variables 
and select 
transform

• Add constants 
if necessary
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Results after transformation

• Transforms used:
– log  (vars 1, 3, 5-12)
– log y + 1 (vars 2, 4)
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Model results after log-transformation

• The deviating compounds have "disappeared"! The model is better.
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Transformations - Summary

• The NEURO application shows that by carefully selecting a variable 
transformation data may be made more approximately normal.

• This, in turn, will enhance the efficiency of the data analysis.

• In regression analysis, the benefits of a response transformation are:

– (i) a simplified response function by linearization of a non-linear response-factor 
relationship, 

– (ii) a stabilized variance of the residuals, and 
– (iii) a distribution of the residuals that is more nearly normal, which sometimes 

implies that outliers are eliminated.



Expansions
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Expanding the X-matrix

• In SIMCA, new variables 
can be constructed with the 
Expand function

• If a non-linear relationship is 
expected - expand with 
quadratic terms

• Do NOT expand with cross-
terms unless supported by a 
design

• Do NOT expand simply to 
get the best fit (highest R2)

• Example: Expanding 50 variables 
with square and cross terms gives 
50 + 50 + 50*49/2 = 1325 variables 
⇒ “redundancy problem” and the 
cross-terms dominate

xk xk
2 xjxk

X Y
ym
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Expansion in SIMCA

• Linear and 
interaction models 
are used for 
screening designs

• Quadratic and cubic 
models are 
employed in RSM 
phase

• Analyze data and 
refine model by 
deleting the 
unimportant 
expansion-terms
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Example - Modelling the process output (SOVR)

• The Data - 18 variables, 572 observations
– 3 manipulated process (input) variables
– 9 intermediate process (input) variables
– 6 output variables
– X-data were from process log (minutes)

• DOE was used
– A CCC design in two levels
– 14 runs + 3 centre points

• The output (or quality) variables were sampled and analysed in the 
laboratory once for each design setting
– Each output measurement was then preserved for 20 minutes to capture normal 

process variation (variations in the X-block)  
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SOVR - Fitting the PLS-model

• A PLS-model was calculated 
with only the 3 manipulated 
input variables
– 3 manipulated input variables
– 6 interaction & square terms
– 6 output variables

• 4 significant PLS-components
– R2Y(cum) = 0.74, Q2(cum)= 0.68
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SOVRING.M7 (PLS), PLS only with designed X-variables
%P_FAR, Comp 4

SOVR - Interpreting the PLS-model
• The coefficient plot for %P_FAR 

shows how the X-s influence Y
• With the contour plot it is easier to 

interpret the effects of combined factors
– here HS_2 and Ton_ in (HS_1 kept at its 
centre value)

For each Ton_in, there is an optimal HS_2
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SOVR - Summary

• For prediction and monitoring purposes use also the non-designed X´s
– The online measurements enable online predictions
– The correlation structure stabilises the model and the predictions
– For early fault detection it is also better to use more process parameters in the 

model, as more types of problems can be detected

• One interesting output to make online predictions for is the Iron content 
in the incoming ore (%Fe_malm)
– Very difficult to get representative samples for analysis
– When %Fe gets too low in the incoming ore, the process engineer must inform the 

miners

Signal Correction and Compression
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Contents

• Introduction
• Signal correction

– de-noising with information scaling
– multiplicative signal correction
– standard normal variate correction
– orthogonal signal correction

• Signal compression
– wavelet analysis
– steps in data compression
– compression of rows
– compression of columns
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Introduction to signal correction

• The first step in multivariate calibration is often to pre-process spectral 
data to remove undesired systematic variation
– base-line variation
– multiplicative scatter effects
– spectral regions of low information content

• Signal correction methods are interpretable as different cases of filtering
• A filter is a mathematical function through which a signal is passed to 

get “improved properties”
• Meaning of “improved properties” vary from case to case

– signal should in some way be more pleasing to the eye
– base-line removal
– enhancement of predictive power of Y
– ...
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De-noising with information scaling

• Example: C3D7000

• UV-spectra (diode array) from an HPLC application in pharmaceutical
industry

• Each row in the data table is a spectrum from 240-380 nm (studied in 
the loadings)

• Each column in the data table is comparable to a traditional 
chromatogram (seen in the scores)

5609/12/2002

Example C3D700 - Plots of raw data

• High 
wavelengths 
(>340nm), 
variables 55-65, 
contain noise

• First 80 spectra 
contain no 
information
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Example C3D700 - PCA

• PC-scores summarize 
HPLC 
chromatograms

• With all variables 
unscaled, t1 is easy to 
understand, but t2 is 
not smooth
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Example C3D700 - PCA with modified scaling weights

• The situation can 
be improved. By 
eliminating the 
noisy variables 
(zeroing); t2
becomes more 
structured
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Information scaling - Summary

• Example C3D700 demonstrates peak resolution of overlapping peaks

• Risk of information scaling: It is very easy to fulfill ones expectations; 
you can obtain any result desired

• Suggested procedure: use an external validation set

• Correctly used - with a cautious and careful attitude - information 
scaling can enhance modelling results
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Signal correction techniques in SIMCA

• Signal correction can be used to pre-process data
– Problem 1: risk of removal of variation from X that correlate with Y
– Problem 2: risk for over-training of model

• Spectral filters available in SIMCA
– Multiplicative Signal Correction, MSC
– Standard Normal Variate Correction, SNV
– Orthogonal Signal Correction, OSC
– First and second order derivation
– Wavelet Compression
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Spectral filters in SIMCA

• MSC: Each digitised 
spectrum (xi´, row-vector 
in X) is regressed against 
the mean spectrum (m): 

xik = ai + bimk + eik

• From each spectrum one 
subtracts the intercept 
(ai) and divides by the 
slope (bi): 

xi,corr´ = (xi´ - ai) / bi

Spectrum A

Mean Spectrum

N

K
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Spectral filters in SIMCA

• SNV: Same mathematical form as MSC
- Parameters ai and bi are calculated as the average and standard deviation of the ith

row of X; Corresponds to row-centering and normalisation

MSC and SNV are baseline corrections which
remove additive and/or multiplicative effects!
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Spectral filters in SIMCA

• Orthogonal Signal Correction, OSC

- Calculate first PC of X ⇔ score t
- Orthogonalise t with regards to Y
- tOSC = (1-Y(Y´Y)-1Y´)t
- Some NIPALS steps to give weights (w*), and 
updates of tOSC and t, until convergence

- Subtract correction E = X - tOSCp´
- One or two OSC components recommended
- Work with one response at a time

• OSC uses information in Y to construct a filter of X

• MSC and SNV work only with X, and may remove 
predictive information from X

X

t osc

p’ osc

Y

E = X t p’- *

E YPLS

OSC

6409/12/2002

Spectral filters in SIMCA

• 1st derivative spectrum
– Provides the slope at each point of the original spectrum
– Has peaks where the original spectrum has maximum slope and it crosses zero where the 

original has peaks
– Removes additive baseline (”offset”)

• 2nd derivative spectrum 
– Measures curvature at each point in the original spectrum. 
– Is more similar to the original spectrum and has peaks approximately as the original 

spectrum, albeit with an inverse configuration 
– Removes a linear baseline

• Problem: May reduce the signal and increase the noise ⇒ noisy spectra
• Savitsky and Golay (SG) smoothing

– SG-derivatives are based on fitting a low degree polynomial (quadratic or cubic degree) 
piece-wise to the data, followed by calculating the first and second derivatives
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Example: Effects of signal correction (SUGAR)
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Introduction to signal compression

• Signal compression can reduce computational time and data storage, but 
also gives de-noising and smoothing

• In SIMCA, wavelet analysis is available
– for row-wise compression (of spectral data)
– for column-wise compression (of time-series data)

• User has to select (1) compression technique and (2) wavelet function 
and order
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Introduction to wavelet analysis

• Wavelets look like small oscillating waves 

• Wavelet analysis produces a linear transformation of the data

• The wavelet transform uses a mother wavelet (a basis function) with a 
certain “scale” (width of analyzing function window) to investigate the 
properties of a signal

• The mother wavelet is stretched or compressed. A narrow wavelet is 
used for detecting sharp signal features (high frequency) and a wider 
wavelet is used for uncovering more general signal properties (low 
frequency)
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Wavelet filters
• The shape of the filter depends on type and order
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Example of signal compression

• Multi-resolution analysis, MRA, is a fast compression algorithm

Original signal

Approximation Detail

Approximation Detail

Appr. Detail

Scale 1

Scale 2

Scale 3

Multiresolution analysis

Wavelet coefficients

The signal is at each scale
filtered into a course and a
detailed part
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Wavelet compression - row-wise

The discrete 
wavelet 
transform 
(DWT) with 
MRA is a good 
approach to 
signal 
compression of 
spectral data

Raw
data

Variables

Obj
ects

DWT

Select columns w largest variances

XXXXXXXXXXX

Padded matrix

Compressed
wavelet matrix

1 2 3

4
56

XX X

XXXXXXXXXXX

PLS

W

T

Steps in data
compression

Synthesis of loading
spectra by inverse
wavelet transformation

Wavelet coefficients
Variance spectrum

y
Extract selected
columns
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Each observation (spectrum) is wavelet transformed

Original data matrix Wavelet data matrix

Wavelet 
variance 
spectrum

0 5 0 1 0 0 1 5 0 2 0 0 2 5 0 3 0 0 3 5 0 4 0 0 4 5 0
0 . 0 5

0 . 1

0 . 1 5

0 . 2

0 . 2 5

0 . 3

0 . 3 5

0 . 4

0 . 4 5

0 . 5

0 5 0 1 0 0 1 5 0 2 0 0 2 5 0 3 0 0 3 5 0 4 0 0 4 5 0
0 . 0 5

0 . 1

0 . 1 5

0 . 2

0 . 2 5

0 . 3

0 . 3 5

0 . 4

0 . 4 5

0 . 5

0 5 0 1 0 0 1 5 0 2 0 0 2 5 0 3 0 0 3 5 0 4 0 0 4 5 0
0 . 0 5

0 . 1

0 . 1 5

0 . 2

0 . 2 5

0 . 3

0 . 3 5

0 . 4

0 . 4 5

0 . 5

Largest coefficients selected 
from the variance spectrum
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Number of wavelet coefficients?

• Optimal number of wavelet 
coefficients to use?

• Problem dependent -
depends on the data set

• X-block, Explained 
variance (95 %, 99.5%)

• ’trial and error’ - stable 
wavelet PLS model

• Visual inspection of the 
’explained variance plot’

• Prior knowledge
• Default in SIMCA: 99.5%
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• Scores - Original domain
• Loadings - Wavelet domain (can be back-transformed)
• Coefficients - Wavelet domain (can be back-transformed)
• Residuals - Original domain
• DModWX - distance to model in Wavelet space; new parameter
• Prediction set - Must be wavelet transformed in identical way as 

the training set

Row compressed PLS models - Properties

Original PLS model Wavelet PLS model
T

W wcW

T Y Y
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Scores
Wavelet domain (can be 
back-transformed)

Loadings & Coefficients
Original domain

Residuals
Wavelet domain (can be 
back-transformed)

Prediction set
Original test observation 
can be inserted, and give 
original predictions !

Column compressed PLS models - Properties

observations

variables

WT

New prediction set observation
inserted without transforming them !

PLS model
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Wavelet compression - Sugar spectra
• With about 95% retained variability, the resulting shapes depend on the filter type and 

its order.
Beylkin
95.6% w. 5 coeff

Coiflet-2
96.5% w. 5 coeff

Coiflet-4
96.5% w 5 coeff

Daubechies-4
96.4% w. 7 coeff

Daubechies-8
95.6% w. 6 coeff

Symmlet-4
96.1% w. 6 coeff

Symmlet-8
96.8% w. 5 coeff
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Wavelet compression - Sugar spectra
• With about 99.5% retained variability, the resulting shapes seem independent of the 

filter type and its order.
Beylkin
99.5% w. 150 coeff

Coiflet-2
99.5% w. 150 coeff

Daubechies-4
99.5% w. 152 coeff

Symmlet-4
99.5% w. 149 coeff

Coiflet-4
99.5% w. 151 coeff

Daubechies-8
99.5% w. 151 coeff

Symmlet-8
99.5% w. 151 coeff
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Conclusions

• Signal correction may enhance properties of data
– Potential of increasing the predictive ability
– Risk for over-fitted model – always use external test data

• Signal compression
– Spectra can be compressed (3-4% of original matrix size)
– Time-series data can be compressed (of relevance for Batch-processes)

• Combination of signal correction and compression
– Combination of OSC and DWT/MRA promising for future use in spectral on-line 

situations for quality monitoring

• Always use external prediction set for model verification
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Contents

• PLS and one response variable

• PLS Discriminant Analysis (PLS-DA)



PLS and one response variable
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Contents

• Constructing the X and Y co-ordinate systems
• Each row in a data table corresponds to two points
• Finding the first PLS component (M = 1)
• Residual f1 after the first component
• Extending the model with the second component (M = 1)
• An estimate of y after two components
• Residual f2 after the second component
• Summary
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Constructing the X and Y co-ordinate systems

• Consider a regression application with N observations, K = 3 X-
variables, and M = 1 y-variable (here, we write lower case y to denote 
that a single variable is considered). 

x3

x1

y

x2

ob
se

rv
at

io
ns

 

factors/predictors
K = 3

N

X

response
M = 1

N

y
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Each row in a data table corresponds to two points

• In PLS each row of a data table corresponds to two points, one in the X-space and one 
in the Y-space. When considering only one y-variable, the Y-space reduces to a one-
dimensional vector. 

x3

x1

y

0
x2
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Finding the first PLS component (M = 1)

• The first component of the PLS model will orient itself so that it well describes the 
point-swarm in the X-space while at the same time accounting for a good correlation 
with the y-data. An estimate of y, yhat(1) , after the first PLS component is 
accomplished by multiplying t1 by the weight of the y-data, c1.

c1t1 = y(1)

yx3

x1

x2 ^

Comp 1

projection
gives score t1
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Residual f1 after the first component

• The residual vector f1, obtained by subtracting yhat(1) from y, is shorter than the vector 
consisting of the measured data. Therefore, the first component has explained a lot of 
response variation.

y

0 0

f1 = y - y(1)
^

x3

x1

x2

Comp 1

projection
gives score t1
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Extending the model with the second component (M = 1)

• The second projection co-ordinate in the X-space is orthogonal to the first one. By 
projecting the observations onto this line one obtains the score vector t2. In the right-
hand part of the figure, we can see how the second score vector times the second 
weight of the y-data, c2, correlates with the y-residual, f1, after the first dimension.

x3

x1

x2 c2t2

Comp 1

Comp 2

f1 = y - y(1)
^

projections
gives scores
t1 and t2
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An estimate of y after two components

• An estimate of y after two components is obtained by computing c1t1 + c2t2. 
Geometrically, yhat(2) is interpretable as the resultant of the vector addition of 
component 1 and component 2 in the X-space.

x3

x1

x2

y
y(2)
^

c1t1 + c2t2 = y(2)
^

Comp 1
Comp 2
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Residual f2 after the second component

• After one component, the y-residual (f1) is significantly smaller than the spread in the 
measured variable. The situation is even better after the inclusion of the second 
component, as the residual f2 is smaller than f1.

y

0 0

f 1 
= 

y 
- y

(1
)

^

0

f 2 
= 

y 
- y

(2
)

^x3

x1

x2

y(2)
^

Comp 1
Comp 2
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Summary, PLS1

• One or several response variables? 
• PLS has the ability to model and analyse several Y-variables together, 

which has the advantage of giving a simpler picture than separate 
models for each response.

• In general, when the Y-variables are strongly correlated, one can 
recommend that they are analysed together, since the correlations 
stabilise the model.

• If the Y's really measure different things, however, and hence are fairly 
independent, one gains little by analysing them in the same model. 

• A simple geometric interpretation of PLS and one response variable is 
possible if the residual vector fa is considered after each component a.



PLS Discriminant Analysis (PLS-DA)
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PLS - Discriminant analysis

• Assessment of drug exposure in metabonomics
• Metabonomics: monitoring of complex time-related metabolite profiles 

that are present in biofluids, e.g., urine, plasma, saliva, etc.

• Proton-NMR spectra 
of urinary profiles of 
drug-exposed rats
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Metabonomics – The Data

• Rats exposed to chloroquine (an antimalarial) or amiodarone (an 
antiarrhythmic)

• Observations: N = 57 rats
Variables: K = 194 variables (1H-NMR shift regions) 

• Six groups (“classes”):
– Control Sprague-Dawley, 10 rats, “s”
– Sprague-Dawley treated with amiodarone, 8 rats, “sa”
– Sprague-Dawley treated with chloroquine, 10 rats, “sc”
– Control Fisher, 10 rats, “f”
– Fisher treated with amiodarone, 10 rats, “fa”
– Fisher treated with chloroquine, 9 rats, “fc

1609/12/2002

Metabonomics – PCA to overview

• Two first 
components
R2X = 0.48
Q2X = 0.38  
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• One outlier, rat 27, encircled
– Measurement error ?
– Handling/environmental differences ?
– Slow responder ? 
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Metabonomics – Contribution plot to reveal differences

• How is rat 27 
different from a 
“normal” sc-rat?

• Chemical shift 
regions 2.58, 
2.70 and 3.22
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PLS - Discriminant analysis
• When clusters are found in PC score 
plots one can

– perform disjoint PCA (recall 
IRIS example), or
– carry out PLS-DA

• What is PLS-DA ?
– A "dummy" variable is added for 
each category. PLS is then used to 
relate X and Y.

• PCA: Maximum variance projection
• PLS-DA: Maximum separation 
projection
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PLD-DA between ”s” and ”sc”

• A way to focus on 
drug effect; outlier 
removed

• The two classes are 
well resolved in 
component 1 
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PLD-DA between ”s” and ”sc”

• Line plot of 
w*1

• Chemical shift 
regions 
influential for 
the separation 
of the two 
classes are 
indicated
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Metabonomics – Conclusions

• Multivariate analysis of NMR-data creates one or several maps (i.e, 
score plots, loading plots) that show trajectories of biochemical 
changes in biofluids induced by toxin exposure or disease

• Through this technology it is possible 
- (i) to detect target organs or pathways of dysfunction
- (ii) to uncover likely chemical mechanisms of toxicity, and
- (iii) to identify useful biomarkers indicative of onset, development, 
and decay of abnormal animal health conditions.

Leading reference: Nicholson, J.K., Connelly, J., Lindon, J.C., and Holmes, E., 
Metabonomics: A Platform for Studying Drug Toxicity and Gene Function, Nature 
Reviews, 2002; 1:153-161.
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Summary of PLS-DA

• Class memberships are explicitly given in PLS-DA; this gives a rotation 
of the latent variables, such that a maximum separation among the 
classes is obtained. 

• PLS-DA works reliably when each class is "tight" and occupies a small 
and separate volume in the X-space.

• PLS-DA is useful with 2-4 classes; discrimination results may become 
incomprehensible with too many classes. 

• When some of the classes are not homogeneous and spread significantly 
in X-space, the discriminant analysis does not work. 
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Contents

• Multivariate Statistical Process Control (MSPC)

• Batch Statistical Process Control (BSPC)



Multivariate Statistical Process Control (MSPC)
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Contents

Multivariate Statistical Process Control (MSPC)

• The Problem
• SPC philosophy
• Control Charts
• MSPC
• Conclusions
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Process Data Analysis - Purposes

1. Monitoring the state of the process, statistical process control (SPC)
– Early warning
– Diagnostics - finding ”assignable causes” (SPC jargon ⇔ interpret deviations)

2. Understanding the relationship between
– input variables, X (process data) and output variables, Y (product quality, cost, 

amount, ...)

3. Optimisation
– Use process models to improve process

609/12/2002

• 50 years ago
– Few variables: T, P, flows

• Today
– Many measurements and very often
– Large data sets
– The latent variable concept

• Process the same

• Data have changed
– K = 5 → 500
– N = 10 → 1000

The Problem

Typical process (from MacGregor et al. 1991)
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Example - Monitoring (PROC1A)

• A chemical production plant
– A continuous steady state process
– All data are coded, not to reveal any trade secrets

• The data - 33 variables, 92 observations
– 7 controlled process variables (x1in-x7in)
– 18 intermediate process variables (x8md-xpen)
– 8 output variables (y1-y8)
– Data sampled during 92 time units (e.g. hours or minutes)

• The process went out of control around time 80 and had to be shut 
down at time 92
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• PCA and multivariate SPC (MSPC) 
using all variables
– The alarm limit (ellipse) is calculated 
from historical data

Example - Monitoring a process (PROC1A)
• Trend curves or traditional SPC on 

some important variables (Outputs)
– In total, 33 trend curves to monitor

Time 80

Time 80
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Multivariate Statistical Approach to Monitoring

• Based on Statistical Process Control (SPC) philosophy
– Based on historical process data
– Future behaviour is referenced against a statistical model of good past behaviour

• Empirical models are easily built from the historical data base
– First and second order models are often good approximations

• Non-directional
– Detects any deviation from normal behaviour - needs to be complemented with 

tools for diagnostics (e.g., contribution plots)
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Control Charts

• A graphical method for evaluating whether a process is in a "state of 
statistical control"
• Measures:

– current deviations Shewhart, Xbar-R, Xbar-s
– cumulative deviations CuSum
– filtered deviations EWMA

• Advantages:
– Results from process displayed graphically and plotted against time
– Feedback
– Continuous improvements

The charts are illustrated with a data set with monthly Canadian unemployment numbers 
1956-75.
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Shewhart charts
• Started by Dr. Walter A. Shewhart

– whose control chart approach remains the 
most widely used.

• Control limits are set so that, if the 
process remains in control, there is only 
a small probability of obtaining a point 
beyond the control limits.

• Normal distribution:
– 95.5% within ± 2 standard dev.s (green)
– 99.7% within ± 3 standard dev.s (red)

• Shewhart chart for monthly Canadian 
unemployment numbers 1956-75.
– Shows current deviations
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Shewhart charts, subgrouping
Subgrouping of the data is often used
when there is a rational reason for doing
so, e.g over a batch, a day, or a week.

• Subgrouping has the advantage of 
making the subgroup averages more 
normally distributed 

• We want to monitor the averages but 
still keep track of the variation between 
individual values. Two types of charts 
are common, both actually results in 
two charts
– Xbar-R, subgroup averages and ranges
– Xbar-s, subgroup averages and standard 
deviation

• The Xbar chart shows the variation 
between the subgroups (averages)

• The R or s chart shows the variation 
within the subgroups.
– Use R when small subgroups
– Use s when large subgroups (>10)

• Rational subgrouping maximises the 
between group variation and minimises 
the within group variation, e.g. per day, 
week, shift group, ...

• Subgrouping is also applicable for 
CuSum and EWMA charts
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• Shewhart (subgroup 3) Xbar, quarterly 
averages

• Shewhart (subgroup 3) Range

Shewhart Xbar-R chart
• The control limits for Xbar are given by

– UCLx / LCLx = target +/- A2Rbar
• A2 is a control chart constant that 

depends on subgroup size
• Rbar is the average subgroup range.

• The control limits for R are given by
– UCLR = D4Rbar, LCLR = D3Rbar

• D4 and D3 are constants that depend on 
subgroup size
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• Shewhart (subgroup 12) Xbar, yearly 
averages

• Shewhart (subgroup 12) standard deviation

Shewhart Xbar-s chart
• The control limits for Xbar are given by

– UCLx / LCLx = target +/- A3sbar
• A3 is a control chart constant that 

depends on subgroup size
• sbar is the average subgroup range.

• The control limits for s are given by
– UCLs = B4sbar, LCLs = B3sbar

• B4 and B3 are constants that depend on 
subgroup size
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CuSum charts
• Instead of plotting the individual 

observations, yt, their cumulative 
deviations from the target value are 
plotted

–

• The CuSum chart shows small shifts in 
mean. It is suitable for autocorrelated 
data.

• This CuSum can wander remarkably far 
on the chart
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• A more common way to present a CuSum 
is to subgroup the data and plot three 
points for each subgroup

• One point is the deviation from the 
target
• One point is the cumulative sum on 
the high side, SH
• One point is the cumulative sum on 
the low side, SL

• K = allowable variation (deadband),
normally = σ/2
• SLT is computed as SHT, but with 
respect to target - K.
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CuSum charts, continued

• CuSum chart (subgroup 12) 
for the unemployment data
– cumulative deviation (shift 
from target)

• In the plot, the lines "K" 
represent the area where the 
process is operating on target. 
The lines "H" are the action 
limits, normally H = 4.5σ. -400
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CuSum of t1 of PROC1A
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Exponentially Weighted Moving Average, EWMA, charts
• EWMA can be used to detect small 

process shifts. The choice of λ will 
affect how quickly. In general EWMA 
detects smaller process shifts (< 2σ) 
faster than the individuals control chart.

– = predicted value at time t+1
– = observed value at time t
– = predicted value at time t
– = prediction error at time t
– = weighting constant, determines 
the memory
– = weight factor                          
with

• Exponential weights (memory) can 
decrease 
– slowly, long memory λ => 0.0
– or fast, short memory λ => 1.0

• EWMA can be seen as a compromise 
between the Shewhart and CuSum

• EWMA is also often used for 
forecasting.
– Then value of λ is often set at 0.2 ± 0.1

∑=−+=+=+
t

tttttttt ywyyyyy )ˆ(ˆˆˆ 1 λλε

1ˆ +ty
ty
tŷ
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EWMA charts, continued
• The three-sigma limits for EWMA are 

given by
–UCL / LCLEWMA = target +/-3σEWMA

•

• σ is the standard deviation of the 
individual measurements.

• The EWMA chart is normally used 
with individuals data
– Here λ = 0.1

λ
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All data are needed

• In Shewhart's days (1930) process controllers were lucky to have one 
measurement of product quality

• Today we may get 10 or more quality measurements on each sample 

• Most outliers remain undetected with the use of classical SPC 
techniques!
– No covariance information
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Fast and Correct Decision Making

• The outliers are not detected until you 
look at the combination of variables

• The information is found in the 
correlation pattern - not in the individual 
variables!
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Multivariate statistical process control (MSPC) charts

• Available charts in SIMCA:
– Shewhart current value
– XbarR mean and range of subgroup 
– XbarS mean and SD of subgroup 
– CuSum cumulative sum
– EWMA exponentially weighted moving average

• MSPC = Control charting applied to multivariate parameters
Parameters which may be monitored in SIMCA
– Scores score vectors, t
– DModX distance to the model
– Hotelling´s T2 multivariate generalisation of Student’s t-test
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• Electrolytic production of Copper
– Boliden AB produces approximately 300 tonnes of Copper every day
– extremely pure (99.998 %) Copper
– impurity testing twice a day to ensure quality (TAI, Total Analysis Index) 
– TAI is a weighted sum of 8 different impurities (PPM-level) 

Example – Quality control/MSPC (CUPRUM)

2409/12/2002

Example – CUPRUM

• The data - 9 variables, 730 observations
– 8 measured variables (Ag-Se)
– 1 calculated variable (TAI)
– data sampled twice a day over one year giving 730 observations
– all variables were log-transformed

• The Copper industry uses only the TAI value to determine the quality 
and thereby the price. Copper products with TAI over 8.0 are discarded.

• Question:
– Can we do better with projection methods? 
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CUPRUM – Time series plot of TAI
• Quality control limit corresponding to TAI = 8
• Samples 111 (TAI = 8.1) and 302 (TAI = 7.8) have approximately the same TAI value

0 200 400 600

2

4

6

8

10

12

14

302

611
577

399

338

228195

167

111

Time series plot of TAI
TA

I

Observation number

2609/12/2002

-0.40

-0.20

0.00

0.20

0.40

-0.40 -0.30 -0.20 -0.10 0.00 0.10 0.20 0.30 0.40

p[
2]

p[1]

cuprum.M1 (PCA-X), pca for overview all vars log-transformed
p[Comp. 1]/p[Comp. 2]

 

kAg

kNikP

kBi

kSb
kAs

kTe
kSe

CUPRUM – Scores and loadings of PC-model
• A PC-projection of the table was made. 

The 8-dimensional table (the TAI 
variable excluded) was thus projected 
onto a two-dimensional plane, showing 
67% of the variability in the data

• Samples 111 and 302 are situated far 
apart!

• The corresponding loading plot 
revealed two types of impurities
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CUPRUM – Contribution plots
• Contribution plots “zoom in” on a single sample. Here, the variable profiles of samples 

111 and 302 are shown.
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CUPRUM - MSPC monitoring
• Example: Hotelling´s T2

– as tolerance limit in a scatter plot
• “Normal operating conditions”

– as control limit in conventional control chart
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CUPRUM - MSPC monitoring

• The new, and independent, score vectors (t) can be monitored in control 
charts. Here Shewhart chart on t2 and DModX
– used to detect trends and upsets (e. g. Observation 338, DModX)

338

3009/12/2002

CUPRUM - MSPC monitoring

• The daily variation can be monitored in an XbarR chart; upper chart 
shows daily means, lower chart daily range
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CUPRUM - MSPC monitoring

• The weekly variation can be monitored in an XbarS chart; upper chart 
shows weekly means, lower chart weekly standard deviation
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CUPRUM - MSPC monitoring

• Weak trends are best detected with CuSum charts on the score vectors
– Here, two periods with deviations from the target can be detected 
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CUPRUM - MSPC monitoring

• The trend seen in the CuSum can also be seen in an EWMA chart, here 
λ = 0.15
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CUPRUM - MSPC interpretation

• The next interesting part is to examine 
why the process behaves in a certain 
way

• The interpretation of drift in score 
vector t2 is done by studying the 
loading vector 2
– In this case the deviations were due to 
changes in contamination pattern. Probably 
due to changes in raw material.
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CUPRUM - MSPC interpretation
• To explain why a single observation 

deviates from the model we use a 
contribution plot

• Contribution plots can be used both for 
deviations in scores and in residuals 
(DModX)

• In the DModX observation 338 seemed 
to be far away from the model
– This sample has too high Pb-value in 
relation to the rest of the variables  
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Multivariate Control Charts by PCA and PLS
Using t's, T2, and DModX in control charts allows us to:
• Track the process over time

• Use all variables simultaneously

• Identify region where the process is operating normally

• Detect when the process starts to go out of control

• Identify anomalous process points

• Interpret the upsets



3709/12/2002

Conclusions - Advantages of MSPC

• Reduction of dimensionality
– Few, new variables (scores) summarise all the information contained in the heap of 

variables describing the process over time, providing a model of the system

• Graphical display of the state of the process
– Few plots (score plots) display the state of the process over time
– Plots retain simplicity of interpretation and presentation

• MV control region
– One can identify a multivariate region where the process is OK and under control

• Understanding
– Loading and contribution plots give an identification of important variables

Batch Statistical Process Control, BSPC
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Contents

• Introduction to batch modelling
• Organisation of batch data
• Example: Baker´s yeast production
• Two levels of batch modelling

– observation level
– batch level

• Stretching and shrinking “time”
• Tracing batch evolution
• Diagnosing upsets
• Batch modelling in practice
• Summary
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Batch processes

• A batch process is a finite duration process (e.g., batch industry, 
metabonomics, QSAR, …)

• The results depend on
– the initial conditions
– the evolution of the batch
– interference during the batch evolution

• To model and monitor batches we need data concerning
– initial conditions Z (sometimes absent)
– data measured during their evolution X
– data describing the interference
– measurements of the results Y (sometimes absent)
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Batch X-data form 3-way tables

Variables

Batches

Time
One batch

• We have a K * N * B data table
– K variables
– N sampling times
– B batches

• 3-way tables can be analysed with
– PCA when only X data
– PLS with response data Y
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Three blocks of data
• In the general case, there are three blocks of data

– Initial conditions data (Z)
– Evolution data (X)
– Results data (Y)

Variables

Batches

Time
One batch

Variables

Initial conditions Evolution measurements Results
characteristics

Variables

Z X Y



4309/12/2002

Baker’s yeast production

• Data come from Jästbolaget AB in Sweden
• The production of the final product took 14 hours
• There were 33 batches, of which 20 were selected as reference batches
• Each batch showed variability due to molasses used, temperature, pH 

etc.

• Can the process be monitored efficiently by multivariate methods?
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Too much ethanol is a problem!

It is important to get an early warning
Multivariate warning occurs 1h before univariate warning !
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7 controlled/monitored variables
– Ethanol monitored
– Temperature controlled
– Feed of molasses controlled, f(quality of molasses)
– NH3 feed controlled, f(feed of molasses)
– Air flow controlled
– Level in tank monitores
– pH controlled

• Data were sampled every 10 minutes. A batch took 14 hours, resulting 
in 84 data points per batch
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Accepted batches (left) and not (right)
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Variables from good and bad batches
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We want early fault detection and classification

• It is not easy to separate good and bad batches by means of the raw data

• We want to detect irregularities as soon as possible in order to have time 
to make corrections before it is too late

• The solution: Combine multivariate modelling with SPC (Statistical 
Process Control), i.e., use MSPC/BSPC
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Two levels of batch modelling

• Observation level
– looks at each individual observation
– maturity prediction
– progress monitoring

• Batch level
– looks at all available data for the whole batch
– results prediction
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PCA - observation level

V a ria b le s

B a tc h e s

T im e

O n e  b a tch

• The easiest way to analyse the 3-
way table is to unfold the data to 
a 2-way table where the data 
from each batch follows the 
other, one below the other 
(variable direction preserved)

• PCA on such a table will show 
how the individual observations 
relate to each other

Variables

Batches

Time batch 1

batch iTime

batch 2

…
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The data are modelled with PCA

• A model is computed that 
summarises X

• The resulting scores show how 
the batches evolve in the 
multivariate process space

• Deviating batches are easily 
detected in the score plots

• Accepts missing data
• Robust to noise, changes in 

observations and variables
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PLS is used at both levels

• Observation level
– predict state of the process
– predict phase (in lack of phase variable)

• Batch level
– predict result variables
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Stretching and shrinking of the “time”

• Batches may develop with different speed. Then time needs to be 
“normalised”, e.g., assigned according to the status of the process

• If a “maturity” variable, e.g., developed energy or volume, is present, a 
maturity index can be calculated and used instead of chronological time. 
The data can then be synchronised with respect to the maturity index

• If a “maturity” variable is lacking, the first score can often be used as a 
substitute maturity variable
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PLS - observation level

• Each row has the data from a 
single observation

• The batches follow each other
• Maturity (or time) is used as Y 

variable
• The resulting scores are new 

variables that capture
– t1: linear relation to Y
– t2: quadratic relation to Y
– t3: cubic relation to Y
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Time

B3

…

Bn

Variables

Batches
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Scores and loadings of observation level PLS model

• Local batch time is positively correlated with level in tank, air flow, 
pH, and temperature. The response variable is little correlated with 
feed of molasses, ethanol content, and feed of NH3.
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Re-arranging of scores and statistics computation

t1

Batch
Average

StDev

Avg + 3 sd

Avg – 3 sd

Time

• Each score is re-arranged batch-wise. The averages and SD.s are 
calculated over the maturity index (time) of the batches

5809/12/2002

Batch control charts – scores t1 – t3

• Established using the 20 reference batches 
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Not only the scores can be monitored

• Apart from the scores the same procedure is made for
– Hotelling’s T2 (summarizes all t.s)
– Predicted time (maturity)
– Distance to the model plane (residuals)

• If the predicted time (maturity) is higher/lower than the actual, the batch 
is progressing too fast/slow

• If the distance to the model is too high, the correlation structure in the 
data has changed. This is commonly the most sensitive indicator of 
process upsets

6009/12/2002

Batch control charts – Predicted time (maturity) & DModX

• Control charts of predicted time (left) and DModX (right) using the 23 
reference batches
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Monitoring the evolution of new batches - scores

• New batches can be monitored in these plots as they evolve, and deviations 
interpreted (contribution plots) – For clarity only three test batches are plotted

• Predictions for batches Da, Ja, and Pa, with entirely different evolutionary 
profiles
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Monitoring the evolution of new batches – Maturity/DModX

• Except for a slight deviation of batch J in the beginning, all three batches 
behave well in the maturity control chart

• The DModX chart shows that batch Ja deviates at the beginning, and batch 
Pa towards batch completion. Batch Da is basically OK all the time.
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Finding variables contributing to deviation from ”normality”

• Comparison 
of ”bad” (Ja 
or Pa) and 
”good” 
(average) 
batches

• Early 
deviation of 
batch Ja (at 
local batch 
time 10)

pH is low 
shortly 
after batch 
initiation 
for batch 
Ja
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Finding variables contributing to deviation from ”normality”

• Comparison 
of ”bad” (Ja 
or Pa) and 
”good” 
(average) 
batches

• Late 
deviation of 
batch Pa (at 
local batch 
time 75)

Ethanol 
content 
higher than 
normal for 
batch Pa 
towards the 
end

-2

-1

0

1

2

3

4

5

6

7

Et
ha

no
l

Te
m

p

M
ol

as
se

s

N
H

3

Ai
r

Le
ve

l

pHAl
ig

ne
d 

Sc
or

e 
C

on
tri

bP
S(

Pa
:7

5 
- A

ve
ra

ge
Ba

tc
h:

75
), 

W
ei

gh
t=

Bakers Yeast Primary.M1 (PLS), PLS 20 reference batches
Score Contrib PS(Pa:75 - AverageBatch:75), Weight=p[1]



6509/12/2002

PLS - batch level: Modelling final batch results

Initial 
conditions 

Data 

Final 
Results

Data 

Scores t1, t2, t3 
or 

original variables 

XB Y 

• Z = Initial conditions: Innoc (= total amount of dry substance added)
• X = Unfolded batch data: Score variables of t1, t2, and t3

• Y = Final results: Amount of yeast & Yield (Amount corrected for
amount of molasses used)

• Sub models can be made on initial data plus data from time 1, time 1-
2, time 1-3, … time 1-T. May be applied consecutively in the 
evolution of a batch as new data become available

Z X Y

6609/12/2002

Scores and loadings of batch level PLS model

• PLS was used to relate XB (initial conditions + obs level scores) to Y 
(Amount & Yield); R2X = 0.47; R2Y = 0.61, A = 2
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Y(obs) / Y (pred) of batch level PLS model

• PLS was used to relate XB (initial conditions + obs level scores) to Y 
(Amount & Yield); R2X = 0.47; R2Y = 0.61, A = 2
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• PLS regression coefficients

t1 t2 t3
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Model interpretation of batch level model

• Batch Variable Importance (provides an absolute measure)
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Predictions of new batches

• Predicted PLS scores and DModX; For clarity only three test batches 
are plotted
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• Five new batches do not fit the model; Predicted Y-values are shown for 
the remaining eight batches.
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Summary - Batch modelling

• Models are developed from a set of accepted batches

• These models provide a powerful tool to monitor new batches as well as 
to make on-line predictions

• The simplicity of presentation and interpretation of common SPC charts 
is retained despite the multitude of variables measured

• Diagnostic information is obtained with a mouse click
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Summary - Batch modelling in practice

• Modelling and execution are 
made on two levels
– Observation level

• working with individual 
observations

• monitoring the evolution 
of the batch

• classifying current phase
– Batch level

• working with the whole of 
the batch

• predicting the outcome  of 
the batch

1. Observation
level

2. Batch level

Batch
data

7409/12/2002

Summary - On-line results predictions

Initial conditions On-line measurements

Time

The PLS models are
used to continuously

get updated predictions
as new data become

available

⇓

Predicted quality (t)

time = t

Available

Available

Predicted

• In an on-line application new data are fed to the PLS batch level 
models as they become available

• Predictions with confidence intervals are computed and presented





Multivariate Data Analysis and Modelling
Basic Course

Chapter 14: Exercises

212/9/2002

Overview of Exercises Layout

• Each exercise contains the following headlines
– Background (Why this investigation?)
– Objective (What is the goal/objective with the exercise?)
– Data (Description of X and Y and observations, originator(s) and literature 

source(s))
– Tasks (What you are expected to do in this exercise)
– Solutions (A proposed solution to the tasks given)
– Conclusions (Emphasising main points of the exercise)

• Please do not hesitate to ask the course instructor(s) for help/advice

• Remember that our solutions are just proposals; other alternatives might 
exist… 
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Exercises – Part I

• Getting started
– FOODS, overview of European 

food consumption profiles
– IRIS, Classification of Iris flowers

• Easy PCA
– ARCHAEOLOGY, Classification 

of soil samples
– METABONOMICS, Investigation 

of Phospholipidosis 

• Easy PLS
– LOWARP, Polymer production 

using multiple responses
– USDVOLVO, How to buy a 

second hand car!

• Quality Control
– THICKNESS, Quality control of 

polymer disk manufacturing
– CUPRUM, Multivariate quality 

monitoring of an electrolysis 
process

412/9/2002

Exercises – Part II
• Process Applications

– SOVRING, Process 
monitoring of a mineral 
sorting plant

– PROC1A, MSPC on process 
data

– Baker’s Yeast, BSPC of a 
batch fermentation process

• Multivariate Characterization
– SURFACTANT, QSAR/QSPR 

modelling of surfactants
– PULP, Modelling and prediction 

of pulp quality

• Multivariate Calibration
– SUGAR, Multivariate calibration 

of sugar quality using 
fluorescence data

– NIR_CHIP, Characterization and 
classification of wood chips using 
NIR-data

– CELLULOSE, Modelling the 
viscosity of cellulose powder 
using NIR-data
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MVDA-Exercise FOODS 
The European food consumption pattern 

 

Background 
Data were collected to investigate the consumption pattern of a number of provisions in different 
European countries. The purpose of the investigation was to examine similarities and differences 
between the countries and the possible explanations. 

Objective 
You should learn how to initiate a new project in SIMCA, import data and make the first projections. 
You should also be able to explain why there are groupings in the plots. Data characteristics that 
differentiate Portugal and Spain from Sweden and Denmark should be discussed. 

Data 
The data set consists of 20 variables (the different foods) and 16 observations (the European 
countries). The values are the percentages of households in each country where a particular product 
was found. For the complete data table, see below. This table is a good example of how to organise 
your data. 
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Tasks 

Task 1 
Create a new project in SIMCA by importing the data from FOODS.XLS (File/New). Make sure that 
the entire data set has been imported: 16 observations and 20 variables. Are there any missing values 
in the data set? 

Task 2 
Analyse the data table according to the following procedure: Run PCA on the data set with all 
observations and variables included. Compute three principal components with Analysis|Autofit. Look 
at the score plots found under Analysis|Scores|Scatter plot for t2 vs. t1 and t3 vs. t1. Are there 
detectable groupings? Change the plot mark to the observation name with the right mouse button 
using Properties|Label Types|Use Identifier. Produce the corresponding loading plots: p2 vs. p1 and p3 
vs. p1, using Analysis|Loadings|Scatter plot. Which variables are responsible for the groupings? 

Task 3 
Projection models are robust. Make a new PC model (Workset|New as Model) and see what happens 
with the model structure if you remove an influential observation like Sweden. Also remove an 
influential variable, for example garlic. Compare the results with those from Task 2. 
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Solutions to FOODS 

Task 1 
There were 3 missing values. 

Task 2 
A three component PC model was computed: 
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The two first components position the central 
European countries in the lower central region of 
the score plot. The southern Mediterranean 
countries are found in the left-hand region and 
the Scandinavian countries in the upper right-
hand portion of the score plot. 
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The corresponding loading plot shows garlic and 
olive oil in one discriminating group of variables. 
These two provisions are often consumed in the 
Mediterranean countries. Crisp bread and frozen 
fish are eaten extensively in the Scandinavian 
countries while the central European countries 
drink instant coffee and eat powder soup 
(Pa_soup). 

 

The third component separates England and Ireland from the rest of Europe. We can see the presence 
of the tea and jam habit, as well as the limited consumption of ground coffee, garlic, and olive oil on 
these islands. 
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Task 3 
A new model was made with Sweden and Garlic excluded.  

 
 

We here show plots pertaining to the two first components. 
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Despite removing what seemed to be a dominating observation and an influential variable, the 
pictures obtained in Task 3 are very similar to those of Task 2. This is because the information 
removed (Sweden & Garlic) was not unique. Similar information is expressed by many variables and 
many observations because of the correlation pattern among them.  

Conclusions 
Groupings among the observations in a data set are often found in the first score plot. These groupings 
can be explained by investigating the corresponding loading plot. The main differences between, on 
one hand, Portugal and Spain, and, on the other, Sweden and Denmark, are high consumption of 
frozen food and crisp bread in the Scandinavian countries, and high consumption of olive oil and 
garlic in the Mediterranean countries. 
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MVDA-Exercise IRIS 
A classical data set in statistics 

Background 
In statistics there are a number of classical data sets which are used to test different methods and 
algorithms. IRIS is one of these historical data sets and has its origins in botany. 

Objective 
In this exercise you will make overview models of a full data set, and on parts of a data set. You 
should be able to interpret loading plots in terms of the variables that contribute to patterns in the 
corresponding score plots. You should be able to make separate models for each subgroup of 
observations and then see how new observations fit these models. This latter approach is called the 
SIMCA (Soft Independent Modelling of Class Analogy) method. 

Data 
The data set contains petal (sw: kronblad) and sepal (sw: foderblad) lengths and widths of 50 
specimens each of Iris setosa, Iris versicolor and Iris virginica. The great statistician Fisher 
introduced this data set as early as 1936. It is commonly known as "The Fisher Iris Data" (see below 
for table header and the first ten observations). We will use 75 observations as training data (stored in 
IRIS training.xls) and 75 observations as prediction data (stored in IRIS prediction.xls). 

Tasks 

Task 1 
Start a new project in SIMCA (File|New) with the Iris data (IRIS training.xls). Check the worksheet 
colouring and provide a project name. Check that all the training data have been imported; 75 
observations and 4 variables. 

Task 2 
To define classes among the observations, use the command: Workset|New. Click on the Tab 
Observations, then click in the observation list, and finally click on the right mouse button and 
activate secondary observation name. 

 

 



 

Copyright Umetrics AB, 03-04-17  Page 2 (9) 

Mark the 25 first observations, choose class 1, and click on Set. Continue with the rest of the 
observations according to the following: 

Obs 1-25 inclusive, class 1 (Setosa) 

Obs 26-50 inclusive, class 2 (Versicolor) 

Obs 51-75, inclusive, class 3 (Virginica) 

First we are going to make a PCA model on the entire training set, i.e. classes 1-3. Go to Analysis | 
Change model type and choose PCA on X-block. Make a two-component PCA overview of the data 
(Hint: Analysis | Two First Components). How are the 3 different species grouped? Which variables 
are responsible for this grouping? Are there any outliers? 

Task 3 
The difference between Versicolor and Virginica may be made more distinct by creating a PCA 
model where the Setosa observations have been omitted: Make a new PC model, Work set|New as 
Model M1. Include the Versicolor (class 2) and Virginica (class 3) observations, but exclude the 
Setosa observations (class 1). Use Analysis|Autofit to compute the model. You will get a one-
component model. However, to be able to make plots we often add a second component to the model 
(use: Analysis|Next component). When we then interpret the plots we may disregard the structure 
along the 2nd component. Is there a separation between Versicolor and Virginica? How do they 
differ? 

Task 4 
We will now use the SIMCA method and compute separate models for each class of observations. Go 
to WorkSet|New as Model M1 (this has to be done to activate class 1 observations again). Press OK. 
Go to Analysis|Change model type and choose PCA Class and the first class. Autofit the model. Save 
the model. Repeat this procedure for classes 2 and 3. Save these models. (Alternatively, the procedure 
specified above can be carried out directly in one step using Analysis|Autofit Class Models.) 

 
We will now test the predictive ability of the three class models. For this purpose we have to import 
the prediction data (i.e. the last 75 observations). Use the command File|Import Secondary Dataset 
and select “IRIS prediction.xls”. Press Open, Next and Finish. Then go to Predictions and select 
Specify Predictionset|Dataset and select as source the IRIS prediction data you just imported.  
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Plot DModX under Predictions|Distance to Model for each model and compare the distances. Any 
overlapping models? (The predictions are made on the model active in the project window). Produce a 
Coomans´ plot (Predictions|Coomans’ plot) for the Versicolor model against the Virginica model. 
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Explanation of data set 
/ IRIS.XLS Last change 950418    
/ No Name Sepal 

Length 
Sepal 
Width 

Petal 
Length 

Petal 
Width 

/      
/ Whole data set     
/ Min  4.30 2.00 1.00 0.10 
/ Max  7.90 4.40 6.90 2.50 
/ Min/Max  0.54 0.45 0.14 0.04 
/ Average  5.84 3.06 3.76 1.20 
/ StDev  0.83 0.44 1.77 0.76 
/      
/ Setosa      
/ Min  4.30 2.30 1.00 0.10 
/ Max  5.80 4.40 1.90 0.60 
/ Min/Max  0.74 0.52 0.53 0.17 
/ Average  5.01 3.43 1.46 0.25 
/ StDev  0.35 0.38 0.17 0.11 
/      
/ Versicolor     
/ Min  4.90 2.00 3.00 1.00 
/ Max  7.00 3.40 5.10 1.80 
/ Min/Max  0.70 0.59 0.59 0.56 
/ Average  5.92 2.77 4.28 1.33 
/ StDev  0.51 0.31 0.48 0.20 
/   
/ Virginica      
/ Min  4.90 2.20 4.50 1.40 
/ Max  7.90 3.80 6.90 2.50 
/ Min/Max  0.62 0.58 0.65 0.56 
/ Average  6.59 2.97 5.55 2.03 
/ StDev  0.64 0.32 0.55 0.27 
/      
ONUM ONAM Se_Le Se_Wi Pe_Le Pe_Wi 
1 Setosa____1E 5.1 3.5 1.4 0.2 
2 Setosa____1E 4.9 3.0 1.4 0.2 
3 Setosa____1E 4.7 3.2 1.3 0.2 
4 Setosa____1E 4.6 3.1 1.5 0.2 
5 Setosa____1E 5.0 3.6 1.4 0.2 
6 Setosa____1E 5.4 3.9 1.7 0.4 
7 Setosa____1E 4.6 3.4 1.4 0.3 
8 Setosa____1E 5.0 3.4 1.5 0.2 
9 Setosa____1E 4.4 2.9 1.4 0.2 
10 Setosa____1E 4.9 3.1 1.5 0.1 
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Solutions 

Task 2 
Two components were obtained. The model explains 96% of the variability in the data. 

 
 

-2

-1

0

1

2

-4 -3 -2 -1 0 1 2 3 4

t[2
]

t[1]

IRIS training.M1 (PCA-X), PCA entire training set
t[Comp. 1]/t[Comp. 2]

Se

Se
SeSe

Se

Se

SeSe

Se
Se

Se

Se

SeSe

Se

Se

Se

Se

Se
Se

Se
Se

Se
SeSe

Ve
VeVe

Ve

Ve
Ve

Ve

Ve

Ve

Ve

Ve

Ve

Ve

Ve
Ve
VeVe
Ve

Ve
Ve

Ve

Ve
Ve

Ve
Ve

Vi

Vi

Vi

Vi
Vi

Vi

Vi

Vi

Vi

Vi

Vi

Vi

Vi

Vi

Vi

Vi
Vi

Vi

Vi

Vi

Vi

Vi

Vi

Vi

Vi

 

 

 

The score plot indicates that the Setosa class is 
well separated from the Versicolor and Virginica 
classes. However, the latter two classes are not 
well separated. The plot mark length has been set 
to 2 characters to minimize the amount of text in 
this picture. 
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The corresponding loading plot shows that Setosa 
specimens have the widest sepals. In all other 
aspects they are smaller (shorter and slimmer). 

 

Se_Wi = Sepal width 

Se_Le = Sepal length 

Pe_Wi = Petal width 

Pe_Le = Petal length 
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Task 3 
All class 1 observations were removed. One component was obtained. For plotting purposes two 
components were calculated. The model describes 71% (87% after two components) of the variability 
in the data. 
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The score plot shows some, but not a complete 
separation along the dotted diagonal line. 
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The loading plot indicates that Versicolor is 
generally smaller than Virginica. The sepal width 
(SeWi), which partly separated Setosa from the 
others, dominates the second component, but 
remember that this result is not significant 
according to cross-validation. 
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Task 4 
Three class models were made: 

 

 
 

The plot below shows DModX for the Setosa model. We find that 24 out of 25 Setosas in the 
prediction set are correctly assessed. (Recall that on the 0.05 level 1 out of 20 are expected to lie 
outside Dcrit.) This fact justifies keeping one component for this model. We can also see that the 
other two species are far away from the model region for Setosa. 

 

 

0

5

10

15

76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

11
0

11
1

11
2

11
3

11
4

11
5

11
6

11
7

11
8

11
9

12
0

12
1

12
2

12
3

12
4

12
5

12
6

12
7

12
8

12
9

13
0

13
1

13
2

13
3

13
4

13
5

13
6

13
7

13
8

13
9

14
0

14
1

14
2

14
3

14
4

14
5

14
6

14
7

14
8

14
9

15
0

D
M

od
XP

S[
1]

(N
or

m
)

Obs ID (Primary)

IRIS training.M3 (PCA-Class(1)), Setosa, PS-IRIS prediction
DModXPS[Comp. 1]

M3-D-Crit[1] = 2.018 

D-Crit(0.05)

 
 

Setosa



 

Copyright Umetrics AB, 03-04-17  Page 8 (9) 

The next plot provides DModX for the Versicolor class. Here the validation observations are also 
very well predicted. However, we can see that some of the Virginicas are false positives, i.e. are found 
below DCrit. This means that these two classes have some common area in the multivariate space. 
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The Virginica model (below) has a similar resolution to the Versicolor class model. The two classes 
are not completely separated.  
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An alternative way of displaying class distances is to plot the distances for two models against each 
other in a Coomans’ plot (below). By also plotting the critical distance, DCrit, for each model in the 
Coomans’ plot, four areas of diagnostic interest are created. This plot is given below, which 
represents a scatter plot of DModX to the Virginica model against DModX for the Versicolor model. 
In the lower left-hand part of the plot there is a region where prediction set samples that fit both 
models are found. In the lower right-hand part and the upper left-hand part observations predicted to 
fit the Virginica model or the Versicolor model are located, respectively. Finally, we have the upper 
right-hand area where we find observations that do not conform with either of the models. 

 

Versicolor

Virginica 
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Conclusions 
An overview PCA was made on the training set of 75 observations. This model revealed that Setosa 
flowers were different from the other two species. In an attempt to resolve the Versicolor and 
Virginica samples, a new model was founded on these two groups. It was found that some, but not 
complete, separation was the case. Finally, the SIMCA approach was tested on the IRIS data set. By 
constructing three local PCA models pertaining to each separate class of Iris species, and predicting 
probable class membership of 75 prediction set observations, it was corroborated that Setosa 
observations were markedly different from the others. Through the construction of a Coomans’ plot, it 
was also confirmed that the classes of Iris versicolor and Iris virginica overlapped in multivariate 
space.  

The conclusions that may be drawn are thus the following: 

 (i) Setosa specimens are quite different from Versicolor and Virginica observations. 

(ii) There is an overlap between the Versicolor and Virginica classes, and they cannot be 
completely separated but it is possible to predict if an unknown sample was (a) definitely 
Versicolor; (b) definitely Virginica; (c) definitely neither; or (d) Virginica or Versicolor 
using this methodology. 
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MVDA-Exercise ARCHAEOLOGY 
Classification of archaeological soil samples 

Background 
In archaeology it is important to confidently classify soil samples in order to determine their origin 
and age. Since undisturbed soil and soil modified by cultivation and dwelling exhibit quite different 
patterns of trace element composition, this objective might be accomplished if soil samples are 
characterised appropriately. Characterisation of soil samples is usually accomplished by measuring 
the level of phosphate. However, this is a univariate description that does not necessarily relate 
perfectly to prehistoric activity. Realising the need for multivariate characterisation of soil samples 
using a multitude of descriptors, Linderholm et al (J Arch Sci 21:303-314, 1994) carried out a 
feasibility classification study involving 18 chemical descriptors. This exercise is based on the data of 
Linderholm et al. 

Objective 
The objective of this study was to classify soil samples to determine their origin, and to gain a better 
understanding of how various soil samples differ.  

Data 
Linderholm et al. collected soil samples from an excavation area outside Mjölby in Sweden. The 
collected samples represent three categories: samples from recognisable features (F) of the site, 
samples from the occupation layer of the site (S) and off-site control samples (C). In total, 22 samples 
were assembled representing a varying degree and intensity of human cultural influence. To carry out 
multivariate chemical characterisation of these soil samples, levels of nine elements (Fe, Cu, P, Mn, 
V, Co, Zn, Cr, and Ca) were registered. These measurements were made using ICP-AES and testing 
two kinds of pre-treatments, viz. total dissolution (TD) and nitric acid (NA). Thus, the chemical 
characterisation embraced 18 descriptors. The data set is explained in more detail below. 

 

Explanation of the data set: 
Characters in observation names: 

F = Feature (refuse pit or hearth) sample 

S = Site sample 

C = Control sample taken off-site 

All other characters refer to specific details at the excavation area, such as geographic location (north, 
west, etc.). For more details reference is made to the original work. 

Characters in variable names: 

TD = total dissolution, first pre-treatment method 

NA = nitric acid, second pre-treatment method. 
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  Fe_TD Cu_TD P__TD Mn_TD V__TD Co_TD Zn_TD Cr_TD Ca_TD

1 F_A100B 2.21 36 0.914 950 50 7 130 34 2.26 
2 F_A100M 2.09 29 1.053 857 46 7 150.5 29 2.49 
3 F_A100T 1.98 27 0.337 786 45 7 110 29 1.38 
4 F_A52B 2.14 44 0.389 1044 52 7 160 31 1.6 
5 F_A52M 1.99 81 2.926 3200 45.5 7 475 28.5 8.08 
6 F_A52T 2.08 64 1.436 1998 45 7 352 29 3.33 
7 F_A40 2.87 47 0.61 1593 63.7 9.3 311 41 3.36 
8 S_1 2.45 24.5 0.136 870 64 8.5 81.5 31.5 1.21 
9 S_2 2.21 26 0.147 873 54 8 94 31 1.3 
10 S_3 2.42 28 0.133 903 61 8 97 32 1.28 
11 S_4 2.28 31 0.133 708 58 7 98 32 1.01 
12 S_5 2.28 29 0.136 679 62 7 84 31 0.95 
13 C_N10B 1.78 7 0.027 263 41 5 37 27 0.93 
14 C_N4B 1.24 4 0.028 222 30 4 24 20 0.87 
15 C_W10B 3.38 12 0.023 1581 72 12 73 51 0.92 
16 C_W8B 2.63 15 0.033 666 61 8 52 36 0.89 
17 C_W6B 1.99 9 0.036 273 47.5 5.5 43 30 0.77 
18 C_N10C 3.21 18 0.033 553 68 9 57 45 0.98 
19 C_N4C 4.21 25 0.067 569 90 12 80 63 1.16 
20 C_W10C 5.29 28 0.045 1315 116 16 89 87 1 
21 C_W8C 4.54 27 0.05 620 102 13 82 72 0.8 
22 C_W6C 2.52 13 0.03 324 56.5 7 45.5 35 0.73 

  Fe_NA Cu_NA P__NA Mn_NA V__NA Co_NA Zn_NA Cr_NA Ca_NA

1 F_A100B 1.89  0.838 933 32 4 141 20 1.93 
2 F_A100M 1.77  1.002 962 29 4 161 17 2.34 
3 F_A100T 1.67  0.342 788 27 3 118 16 1.04 
4 F_A52B 2.03 55 0.43 1208 37 5 185 20 1.49 
5 F_A52M 1.77 114 2.679 3160 32 5 561 21 5.11 
6 F_A52T 1.88 81 1.284 2098 33 4 396 20 3.24 
7 F_A40 2.315 42 0.6 1522 36.5 6 300 23.3 2.79 
8 S_1 2.34 30 0.147 1034 44 6 98 19 0.97 
9 S_2 2.15 38 0.158 970 40 6 124 22 1.07 
10 S_3 2.17 33 0.143 904 55 5 102 25 0.97 
11 S_4 2.02 33 0.134 743 50 4 102 22 0.87 
12 S_5 2.05 31 0.129 660 53 4 87 22 0.82 
13 C_N10B 1.34  0.023 158 21 2 33 14 0.33 
14 C_N4B 0.87  0.026 107 17 1 21 11 0.28 
15 C_W10B 2.82  0.019 1499 45 8 66 31 0.5 
16 C_W8B 2.375 13 0.03 656 39 4.5 50 23.5 0.465 
17 C_W6B 1.73 8 0.031 198 30 3 39 18 0.47 
18 C_N10C 2.65 16 0.029 505 38 6 68 28 0.42 
19 C_N4C 3.56 27 0.059 483 53 7 72 41 0.73 
20 C_W10C 4.91 20 0.034 1367 71 11 82 64 0.92 
21 C_W8C 4.065 32 0.044 608 53 8 74 44 0.73 
22 C_W6C 2.21 20 0.024 262 35 5 39 21 0.39 
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Tasks 

Task 1 
Open SIMCA and import ARCHAE.SIM (or ARCHAE.XLS). This file has 22 observations (soil 
samples) and 18 variables. The data set is incomplete and contains some missing values in variable 11 
(Cu_NA). 

Task 2 
Select all variables and log-transform these (WorkSet|New|Transform). Run PCA to make an 
overview of the soil samples. Create the necessary score- and loading-plots. Review and interpret the 
model. Can you see any groupings in the data? 

Task 3 
When PCA results in clustering of observations, it is sometimes worthwhile to resolve these 
groupings by means of PLS discriminant analysis (PLS-DA). Define three classes of observations 
according to: 

• class 1, F-observations 

• class 2, S-observations 

• class 3, C-observations 

Then run PLS-DA and interpret the PLS model. Which variables have the highest discriminatory 
power? 
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SOLUTIONS to ARCHAEOLOGY 

Task 2 
PCA yielded a two-component model. In the t1/t2 score plot the three categories of samples are well 
separated. The diagonal going from the upper left-hand corner to the lower right-hand corner might be 
interpreted as the direction of cultural activity. The corresponding loading plot reveals that the trace 
elements cluster in two groups. One group contains Mn, Cu, Ca, Zn and P and the other Co, V, Fe, 
and Cr. There is a larger difference between these two groups of variables than between the TD and 
NA pre-treatments. Finally, the DModX graph tells us that observation 15 (C_W10B) is not explained 
well by this PC model. 
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Task 3 
PLS discriminant analysis resulted in a five-component model. The t1/t2 score plot shows that the 
three classes of archaeological soil samples are clearly separated. To interpret this pattern we can look 
in the PLS loading plot. Here, the triangular distribution of the three dummy variables (denoted 
§M2.DA1 - 3) is expected because of their 0/1-nature. Chemical descriptors that are close to these 
dummy variables contribute strongly to the separation of the classes. Thus, the Control observations 
have comparatively high levels of Cr, Fe, V, and Co, and low levels of Mn, Cu, Zn, Ca, and P. The 
Feature group of observations has a reversed pattern, and the Site samples are between these two 
extremes. More quantitative estimates of the discriminatory power can be obtained from the VIP-plot. 
Obviously, the vanadium content measured with the NA pre-treatment method displays the strongest 
discriminatory power. However, according to the jack-knife estimates this is the most uncertain X-
variable. 
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Conclusions 
The initial PCA model revealed strong groupings among the three categories of archaeological soil 
samples. It was found that the scores t1 and t2 reflected jointly the level of cultural disturbance in the 
soil samples. Furthermore, it was concluded that there was a larger difference between the two main 
groups of elemental profiles than between the NA and TD pre-treatment techniques. In the last 
modelling stage, PLS-DA was attempted. A strongly significant PLS model was acquired, indicating 
that the 18 chemical variables contained class separating information. The separation of the three 
classes was slightly superior compared with previous modelling attempts. As a quantitative measure 
of the discriminating power of the 18 chemical descriptors, the VIP parameter was used. It was 
inferred that the vanadium content, monitored after NA pre-treatment, was the descriptor that carried 
most class discriminating information. 
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MVDA-Exercise METABONOMICS 
A Metabonomic Investigation of Phospholipidosis 

Background 
Metabolites are the products and by-products of the many complex biosynthesis and catabolism 
pathways that exist in humans and other living systems. Measurement of metabolites in human 
biofluids has often been used for the diagnosis of a number of genetic conditions, diseases and for 
assessing exposure to xenobiotics. Traditional analysis approaches have been limited in scope in that 
emphasis was usually placed on one or a few metabolites. For example urinary creatinine and blood 
urea nitrogen are commonly used in the diagnosis of renal disease. 

Recent advances in (bio-)analytical separation and detection technologies, combined with the rapid 
progress in chemometrics, have made it possible to measure much larger bodies of metabolite data 
[1]. One prime example is when using NMR in the monitoring of complex time-related metabolite 
profiles that are present in biofluids, such as, urine, plasma, saliva, etc. This rapidly emerging field is 
known as Metabonomics. In a general sense, metabonomics can be seen as the investigation of tissues 
and biofluids for changes in metabolite levels that result from toxicant-induced exposure. The 
exercises below describe multivariate analysis of such data, more precisely 1H-NMR urine spectra 
measured on different strains of rat and following dosing of different toxins. 

Objective 
The example data set deals with male rats treated with the drugs chloroquine or amiodarone, both of 
which are known to induce phospholipidosis, here coded as “c” or “a”. The drugs were administered 
to two different strains of rat, i.e., Sprague-Dawley and Fischer, here coded as “s” or “f”. Sprague-
Dawley rats represent a standard laboratory animal model whereas Fishers rats are more susceptible to 
certain types of drug exposure and hence it is easier to detect drug effects. The experimental objective 
was to investigate whether 1H-NMR data measured on rat urine samples could be used to distinguish 
control rats and animals subject to toxin exposure. The objective of this exercise is to shed some light 
on how PCA and PLS-DA may be used in state-of-the-art Metabonomics. 

Data 
In total, the data set contains N = 57 observations (rats) and K = 194 variables (1H-NMR chemical 
shift regions). The observations (rats) are divided in six groups (“classes”): 

• Control Sprague-Dawley (s), 10 rats,      “s” 

• Sprague-Dawley treated with amiodarone (sa), 8 rats   “sa” 

• Sprague-Dawley treated with chloroquine (sc), 10 rats   “sc” 

• Control Fisher (f), 10 rats      “f” 

• Fisher treated with amiodarone (fa), 10 rats    “fa” 

• Fisher treated with chloroquine (fc), 9 rats    “fc” 

The urine 1H NMR spectra were reduced by summation of all the data points over a 0.4 ppm region. 
Data points between 4.5- 6.0 ppm, corresponding to water and urea resonances, were excluded,  
leaving a total of 194 NMR spectral regions as variables for the multivariate modelling. A more 
elaborate account of the experimental conditions are found in [2]. We are grateful to Elaine Holmes 
and Henrik Antti of Imperial College, London, UK, for giving us access to this data set. 
1) Nicholson, J.K., Connelly, J., Lindon, J.C., and Holmes, E., Metabonomics: A Platform for Studying Drug Toxicity and Gene Function, 
Nature Review, 2002; 1:153-161.   2) J.R. Espina, W.J. Herron, J.P. Shockcor, B.D. Car, N.R. Contel, P.J. Ciaccio, J.C. Lindon, E. 
Holmes and J.K. Nicholson. Detection of in vivo Biomarkers of Phospholipidosis using NMR-based Metabonomic Approaches. Magn. 
Resonance in Chemistry 295: 194-202 2001. 
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Tasks 

Task 1 
Create a new project in SIMCA by importing the data from METABONOMICS.DIF (File/New). The 
first column in the data set is labelled ClassID. SIMCA assigns this column to a Secondary 
Observation ID. Accept this. SIMCA will later auto-generate a Primary Observation ID. 

To define a Primary Variable ID, first press the arrow as indicated in the picture below, then select 
Primary Variable ID. This first row is equivalent to the chemical shift regions in the NMR-spectra. 

 
 

Press Next, and verify the entire data set has been imported: 57 observations (rats) and 194 variables 
(chemical shift regions). Are there any missing values in the data set? Press Finish. 

Task 2 

Generally, when working with spectral data it is recommended to work with non-scaled (‘Ctr’) data. 
However a disadvantage of not scaling is that only those chemical shift regions with large variation in 
signal amplitude will be seen. Pareto-scaling can be seen as a compromise between UV-scaling and 
no scaling as it enhances the contribution from medium sized features without inflating the noise from 
‘quiet’ areas of the spectrum. For NMR data Pareto-scaling and mean-centering are a good choice for 
overviewing the information in the data set using PCA. 
To Pareto-scale and mean-center the data, follow these steps: Workset/Edit, select the Scale tab, and 
mark all the variables. Under Set Scaling/Base select “Par”. Press Set. (By default “Par” scaling 
automatically mean-centres the data). Simply press OK and you will be ready to fit the principal 
component model. 

Task 3 

Compute an overview PCA model on the entire data set. Create the necessary scores-, loadings, and 
DModX-plots and interpret the model. What do you see? Are there any groupings consistent with 
strain of rat? Toxin exposure? Are there any outliers? 

Task 4 

In order to illustrate the utility of PLS-DA we are going to focus on the difference between group “s” 
(controls of Sprague-Dawley) and “sc” (SD rats treated with chloroquine). However, in so doing we 
must first eliminate the outlying “sc”-rat. PLS-DA requires homogenous groups devoid of outliers, 
otherwise inconsistent patterns may result. 
To specify the two classes, do the following: Workset/New as Model 1, press the Observations tab. 
Right-click to get the following picture: 
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Select ObsID (Class ID) as the only displayed observation ID (i.e., deselect Obs ID Primary). Press 
Select All and Exclude. (Now all observations are excluded). Then go to Find and enter a lower case s 
to find the first class. Press Include and assign class number 1 to this class. Repeat this with the sc-
group and assign class number 2 to this group of rats. Finally remove (exclude) the penultimate sc-rat, 
which was diagnosed as an outlier in the foregoing task. You should now have 19 rats selected.  

Fit the PLS-DA model (Analysis/Change Model Type/PLS-DA/Autofit. Review the fit and interpret 
the model. Is it possible to use NMR-data to discriminate between these two groups? 

Task 5 
We will now apply the SIMCA method to the s and sc-groups. 

Go to Analysis|Change Model Type and choose PCA Class and the first class. Autofit the model and 
save. Repeat this procedure for the second class and save. Review and interpret these models. 

Alternatively, the procedure specified above can be carried out directly in one step using 
Analysis|Autofit Class Models. You may experiment with this facility if you wish, or continue with 
the exercise as described below. 
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We will now test the predictive ability of the two class models. For this purpose we define a 
prediction data set. Use Predictions and select Specify Predictionset|Dataset and select as source the 
entire Metabonomics data set.  

 
Produce a Coomans´ plot (Predictions|Coomans’ plot) for the two class models. What can you say 
about classification ability of these two models? 

Task 6 

It should be noted that other comparisons might be made rather than just  “s” with “sc”. Other ways of 
focusing on drug effects are to compare “f” ⇒ “fa”, “f” ⇒ “fc”, and “s” ⇒ “sa”. However, there are 
also other aspects of the data analysis, which may reveal interesting information. For example, a 
comparison made between “f” ⇒ “s” would indicate rat differences and perhaps diet differences. And 
looking at “fa” ⇒ “sa” and “fc” ⇒ “sc” might suggest species dependent drug effects.  
 

You may experiment with any of these combinations.  

 

There is no solution provided to this task. 
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Solutions to METABONOMICS 

Task 1 
There are no missing data. 

Task 2 
- 

Task 3 
For an overview model, usually only the two first components are extracted. In this case, these 
showed the performance statistics R2X = 0.48 and Q2X = 0.38.  

 
The plot below shows the scores of these two components.  
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We can see that all the chloroquine-treated animals are positioned in the top part of the plot, whereas 
the majority of the amiodarone-treated rats are found in the bottom part. All controls are located in the 
central, predominantly right-hand, part of the plot. Hence, the second principal component reflects 
differences in the effect of the two drugs.  
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As seen, this score plot is not identical to the original one. We may take advantage of the Secondary 
Observation ID (here called ClassID) to modify this plot regarding colour, markers, etc. To 
accomplish this, right-click in the plot and choose Label Types tab, Use Identifier, ClassID, and press 
Apply. Next you select the Colour tab, Colouring type, By Identifier, Choose the ID to colour by, 
ClassID. Then you can assign any colour to the classes. However, since we only use black&white 
printing we decided to use only black and grey. Additionally, we modified the plot marks a little to get 
the plot seen above. 

Going back to the interpretation of the score plot, an interesting discovery is that the “f”-groups tend 
to be “right-shifted” along the first principal component in comparison with the corresponding “s”-
groups. This makes us interpret the first PC as a “difference-between-type-of-rat”-scale. 

In order to interpret the scores we use the loadings. The next figure displays a line plot of the first 
loading spectrum. This spectrum highlights the various chemical shift regions contributing to the 
formation of the first score vector. For instance, the Fischer rats generally tend to have higher peaks at 
chemical shifts 2.46, 2.54, 2.58, 2.70 etc., and lower peaks at shifts 2.30, 3.66, 3.74, and 7.34., etc., 
regardless of chemical treatment. If a similar loading spectrum is plotted for the second loading 
vector, it is possible to identify which spectral variables reflect the major differences in NMR data 
following exposure to either amiodarone or chloroquine. 
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Moreover, it is interesting to examine the model residuals (see DModX plot below). The DModX plot 
reveals one very different “sc”-rat with a DModX-value exceeding the critical distance by a factor of 
2. When tracing this information back to the previous score plot, we realize that this animal is the 
remotely positioned sc-rat (marked with the open frame). This is an observation with unique NMR-
data and its spectrum should be more carefully inspected to understand where the differences arise. 
These differences could be due to some very interesting change in metabolic pattern, or be due to 
experimental variation in the handling of the rats, or perhaps a data transfer error. One way to 
pinpoint the likely cause for this discrepancy in DModX is through the loading plot or a contribution 
plot, but that option is not further exploited here. 
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It is obvious from the above PCA model that the observations (rats) are grouped according to 
treatment in the score plot. However, knowledge related to class membership is not used to find the 
location of the principal components. The PC-model is calculated to approximate the observations as 
well as possible. It must be realized that PCA finds the directions in multivariate space that represent 
the largest sources of variation, the so-called principal components. However, it is not necessarily the 
case that these maximum variation directions coincide with the maximum separation directions among 
the classes. Rather, it may be that other directions are more pertinent for discriminating among classes 
of observations (here: NMR spectra or rats). 

It is in this perspective that a PLS based technique, called PLS discriminant analysis (PLS-DA), 
becomes interesting. PLS-DA makes it possible to accomplish a rotation of the projection to give 
latent variables that focus on class separation (“discrimination”). The method offers a convenient way 
of explicitly taking into account the class membership of observations even at the problem 
formulation stage. Thus, the objective of PLS-DA is to find a model that separates classes of 
observations on the basis of their X-variables. This model is developed from a training set of 
observations of known class membership. 

In PLS-DA, the X-matrix consists of the multivariate characterization data of the observations. In 
order to encode a class identity, one uses as Y-data a matrix of dummy variables, which describes the 
class membership of each observation in the training set. A dummy variable is an artificial variable 
that assumes a discrete numerical value in the class description. The dummy matrix Y has G columns 
(for G classes) with ones and zeros, such that the entry in the g.th column is one and the entries in 
other columns are zero for observations of class g. 
In the next task (Task 4) you will be asked to do a PLS-DA between two classes of rats, the “s” and 
“sc” classes. 

(27) 
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Task 4 

A PLS-DA model was calculated based on the 19 rats in the “s” and “sc”-groups. All variables were 
mean-centered and Pareto-scaled. This model contained two very strong components, showing the 
performance statistics R2X = 0.69, R2Y = 0.94 and Q2Y = 0.90. We will neglect the two last 
components due to their minor importance. 

 

The X-score plot of t1 and t2 of this model is displayed in the next figure. Evidently, there is strong 
separation (“discrimination”) between the “s” and “sc”-groups. It is mainly the first component that is 
responsible for separating the two groups of rat from each other. The second model component picks 
up within-class variation.  
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Thus, there is really no doubt that the chemical treatment of the rats induces a substantial and 
characteristic change in their NMR-profiles. The next coefficient plot shows which chemical shift 
regions contribute to the separation of the two classes. 
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An alternative to PLS-DA is SIMCA, short for “Soft Independent Modelling of Class Analogy”, or 
SIMCA for short [4,5]. SIMCA is a graphically oriented technique, and is applicable when clear 
groupings exist in the data, such as those seen above.  

In SIMCA one separate PCA-model for each class is computed. After the separate modelling of each 
class, the models are used to predict a likely class membership (“classification”) for new 
observations. An observation is classified in SIMCA according to the tolerance intervals of the 
different classes. Observations that do not fit any class are then considered as outliers, or perhaps as 
founders of a new, hitherto unseen, class. Furthermore, in regions where tolerance intervals overlap, 
the observations cannot be unequivocally assigned. 

These local PCA-models can be interpreted by inspecting loadings, scores, residuals, and contribution 
plots. Among other things, this will indicate which variables contribute to modelling class similarity 
(loading plot), and which variables do not (contribution plot in residuals of non-fitting observations). 
 

In the next task (Task 5) you will asked to carry out a SIMCA-analysis for the s- and sc-groups. 
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Task 5 

One local PCA-model was fitted to the “s”-group and another to the “sc”-group. These two models 
were four-dimensional and were used to infer class membership of all the other rats. The results from 
the classification phase are summarized in the Coomans’ plot below. 
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The essence of the Coomans’ plot is that class distances (DModX’s) for two classes are plotted 
against each other in a scatter plot. By plotting also the critical distance, DCrit, for each model in the 
Coomans plot, four areas of diagnostic interest are created. In the lower left-hand part of the plot a 
region where prediction set samples (rats) that fit both models are found (no rats in this case). In the 
lower right-hand part and the upper left-hand part there are regions where those observations 
predicted to fit the “sc”-model or the “s”-model are found, respectively. Finally, we have the upper 
right-hand area where we find observations that do not conform to either of the models. These are all 
the “sa”, “f”, “fc”, and “fa”, which consistently are found to be different from the “s”- and “sc”-rats. 

Conclusions 

This example shows the power NMR data in combination with multivariate statistics to capture 
differences between groups of rats. As a rule, it is always a good idea to commence any data analysis 
with an initial overview PCA of the entire data set. This will indicate groups, time trends and outliers. 
Outliers are observations that do not conform to the general correlation structure. One clear outlier 
was identified among the “sc”-rats. 

By way of example we have also shown how groupings spotted by an initial PCA, may be studied 
further on a more detailed basis. Then techniques like PLS-DA and SIMCA are very useful. A 
necessary condition for PLS-DA to work reliably is that each class preferably is "tight" and occupies a 
small and separate volume in the X-space. Also, the number of modelled classes must not be too high. 
Experience shows that PLS-DA is useful with 2-4 classes, but when the number of classes exceeds 
four, it is usually more tractable to switch to SIMCA. 

In this exercise, we have focused on the differences between two classes, i.e. the “s” and “sc”-rats. 
This is an analysis that will pick-up the drug-related effects of the chloroquine treatment. In order to 
find out exactly which variables (i.e., chemical shift regions) carry the class discriminatory power one 
may consult plots of PCA or PLS-loadings, or contribution plots. A few of these possibilities were 
hinted at throughout the exercise. 
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MVDA-Exercise LOWARP 
Production of a polymer with desired properties 

Background 
The development of a polymer with a certain profile of properties was desired, i.e. low warp and high 
strength. To obtain this a polymer formulation was made with the following (coded) constituents: 

1. Glas 20 to 40 % 

2. Crtp 0 to 20 % 

3. Mica 0 to 20 % 

4. Amtp 40 to 60 % 

A quadratic model was selected and a mixture extreme vertices design with 14 runs + 3 centre points 
was made. 

Objective 
The objective was to identify the most important constituents and to understand how to modify the 
polymer recipe in order to maximise strength and minimise warp. 

Data 
14 responses relating to both warp and strength were measured on the product (see data table on the 
next page). 

Tasks 

Task 1 
Create a new project from LOWARP.SIM. Check that the worksheet colouring agrees with the 
description above. The first two columns contain observations ID.s. The X-data starts in the third 
column. Give the project a unique name.  

Set the first 4 variables to X and the rest to Y (WorkSetNewVar. Blocks). Make an overview of the 
responses using PCA (AnalysisChange Model TypePCA on Y-block). Interpret the model (scores, 
loadings, residuals, …). How are the responses related? 

Task 2 
Change model type to PLS and Autofit. Investigate the relevant score and loading plots. Which 
predictors are influential for the responses?  

Task 3 
When working with many response variables (14 in this case) the loading plot is convenient for model 
interpretation. However, it is possible to conduct model interpretation with the help of regression 
coefficient plots. What message(s) do coefficient plots convey in this case? What is the difference 
between a coefficient plot and a loading plot? 
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Data: 
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Solutions to LOWARP 

Task 1 
Three components were extracted with PCA. 

 
 

The score plot indicates that the 17 observations are rather well distributed. This is a consequence of 
the underlying mixture design. According to the loading plot, the first component reflects warp and 
the second component describes variation in strength. In addition, we can see that the warp responses 
are clustered in two distinct groups. 
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In the left plot below the variance explained for each variable is displayed. Obviously, strength is 
modelled better than warp. The right plot shows the distance to the model for each observation. All 
observations are well inside the critical distance. 
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Task 2 
A PLS model with three significant components was obtained. Three components will thus give 
optimal predictive power. Here, however, two components will be used, as our focus primarily lies on 
interpretation. The increase in Q2 when going from two to three components is marginal. 

 
 

The score plots below show a good correlation between t and u, which means that there is information 
in X describing Y. 
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The loading plot below highlights the same grouping of responses that was discovered in the previous 
task. Obviously, the eight warp responses are strongly correlated, as they are situated tightly together. 
The six strength responses, however, are less correlated internally and therefore more spread in the 
loading plot. Two strength responses, st3 and st5, are weakly correlated with the warp responses, 
whereas the other four strength responses (st1, st2, st4 and st6) are partially correlated with the warp 
responses. We can see that glas is not a good factor for accomplishing the experimental objective, as 
it influences both strength and warp in the same way. Raising the amount of glas in the formulation, 
for example, will cause an increase in the values of all responses. In order to increase strength one 
should primarily focus on lowering the amount of crtp in the recipe, as this factor does not influence 
warp to any appreciable extent. And to decrease warp one should increase mica and decrease amtp.  

Thus, observations likely to meet the demands placed on the manufactured polymer ought to be 
positioned in the upper left-hand quadrant (and as far away from the origin as possible) of the score 
plot. Because there are no observations in the peripheral part of the upper left-hand area, the 
conclusion is that no experimental run in the design perfectly matches the desired response profile. 
Consequently, the PLS model must be scrutinised to identify experimental conditions that provide a 
reasonable compromise between low warp and high strength. We can see in the score plot that 
observation numbers 6 and 11 might be appropriate. 
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Task 3 
The loading plot above is an overview showing the correlations between all factors and all responses 
at the same time. It is possible to “zoom-in” and look at model details of a separate response using a 
coefficient plot. Responses situated together in the loading plot should have similar regression 
coefficient profiles, whereas uncorrelated responses should not have similar coefficient profiles. 
Below, regression coefficients are plotted for two uncorrelated responses and for two correlated 
responses.  
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Conclusions 
There is a strong association between the four ingredients of the polymer and the measured property 
variables. Glas is not a good factor to change in order to accomplish the experimental objective, as it 
influences both strength and warp in the same way. In order to increase strength one should primarily 
focus on lowering the amount of crtp in the recipe. In order to decrease warp one should increase 
mica and decrease amtp.  
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MVDA-Exercise USDVOLVO 
The optimum way to buy a second hand car 

Background 
Second hand car dealers often have large advertisements in the daily press. The challenge is to find 
the best car among all the possible candidates. These data come from one full-page advertisement 
where each car is described according to 6 different criteria. In total, data were listed for 111 cars. We 
thank Sven Ahlinder at Volvo Technical Development, Gothenburg, Sweden, for his ideas and 
suggestions for this exercise. 

Objective 
The objective of this exercise is to decide which second hand car is the best buy. 

Data 
The data set has both quantitative and qualitative variables. Some variable information is coded into 
the observation names to make the plots more interpretable. 

 Variable Type NamePos in ObsName 
• Selling Site Qual 1-2 Sisjön, Sävedalen, Hisingen, Kungsbacka, Kungälv, 

   Stenungsund, Lilla Edet 
• /Type Not to be used (used to compute Model and Combi) 
• Car Model Qual 3-5 240, 340, 440, 460, 740, 760, 850, 940, 960 
• Combi Qual 0 or 1 
• Equipment Qual 6-8 Turbo, S, SE, GL, GLT, GLE, E 
• Engine Quant - litres 
• Year Quant 9-10 
• Mileage Quant - km/10 
• Price Quant - SEK 

Tasks 

Task 1 
Make a new project by importing the data file UsdVolvo.xls. In the Import Data Wizard mark Site, 
Model, Combi and Equip as qualitative variables. The final data set should have 110 observations 
and 8 variables. Keep the variable “Engine” despite 60% missing values. Make a PC-model to obtain 
an overview of the data. Use the selling site, car model, equipment, and year as plot markers in the 
score plots to find any data related structure. For example, to have “Equipment” as the score plot 
mark, make the score plot, click on the right mouse button. Now, the Properties dialogue will open. 
Set Start = 6 and Length = 3 (in Plot Labels/Use Identifier/Secondary Observation ID). 

Are there any outliers, groups or trends among the cars? 

Which variables dominate the correlation structure? Which variables correlate with Price? 

Are there any cars with large residuals? If so, why? 

Task 2 
Autofit a PLS model with Price as the Y-variable. Exclude any clear outliers after having looked at 
the raw data. Make a second model. Find the car that is most worth buying. What are the estimated 
prices of the excluded cars, if any? Can you say something about the different selling sites? Should 
any dealers be avoided? 
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Solutions to USDVOLVO 

Task 1 
PCA based on default cross-validation suggests two PCs to be significant. The comparatively low 
values of R2 and Q2 is characteristic for data tables with a large portion of qualitative data. In fact, a 
few of the variables like Engine, Mileage, and Year are well explained and predicted by the model. 

0.00

0.20

0.40

0.60

0.80

1.00

Comp[1] Comp[2]

Comp No.

UsdVolvo.M1 (PCA-X), PCA for overview all carsR2X(cum)
Q2(cum)

0.00

0.20

0.40

0.60

0.80

1.00

Si
te

(H
is

in
Si

te
(K

un
gs

Si
te

(K
un

gä
Si

te
(L

illa
Si

te
(S

is
jö

Si
te

(S
te

nu
Si

te
(S

äv
ed

M
od

el
(2

40
)

M
od

el
(3

40
)

M
od

el
(4

40
)

M
od

el
(4

60
)

M
od

el
(7

40
)

M
od

el
(7

60
)

M
od

el
(8

50
)

M
od

el
(9

40
)

M
od

el
(9

60
)

C
om

bi
(0

)
C

om
bi

(1
)

Eq
ui

p(
E)

Eq
ui

p(
G

L)
Eq

ui
p(

G
LE

)
Eq

ui
p(

G
LT

)
Eq

ui
p(

S)
Eq

ui
p(

SE
)

Eq
ui

p(
Tu

rb
En

gi
ne

Ye
ar

M
ile

ag
e

Pr
ic

e

UsdVolvo.M1 (PCA-X), PCA for overview all carsR2VX[2](cum)
Q2VX[2](cum)

 

We used positions 1-2 in the name to display Site: 
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No visible structure correlated to Site. 
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We used position 3-5 in the name to display Model: 
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The vehicles were clearly grouped by Model type. 

 

We use positions 6-8 in the name to display Equipment: 
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This grouping by Equipment is probably related to Model. 
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We use positions 9-10 in the name to display Year: 
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There is a trend in Year from left to right. 

 

The loading plot: 
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Price, Year, Mileage, and Model dominate the loading plot. Price and Year were positively correlated, 
and both were negatively correlated with the variables Mileage, 740, and GL. 
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When examining the residuals we can see that 
observation 75 is an outlier, also observations 79 
and 97 are suspected outliers. 

By making a contribution plot (DModX-mode) 
for observation 75 we find that variable 340 
dominates the residual. The reason for this is that 
this car is the only 340 car in the data set. 
(Similarly, observations 79 and 97 are the only 
ones of model 760.) 
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Task 2 
A two-component PLS model was obtained. It is a good model, which models 84% of the price with 
76% validity. 
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One useful plot is the inner relationship t1/u1. 

-6

-4

-2

0

2

4

6

-5 -4 -3 -2 -1 0 1 2 3 4

u[
1]

t[1]

UsdVolvo.M2 (PLS), PLS all cars
t[Comp. 1]/u[Comp. 1]

61

 
 

A clear outlier, observation 61, Hi945S_ is detected. It has the unrealistic price of 17.100 (due to an 
input error, was originally 171.000). Not knowing the reason we excluded this observation and 
computed an updated PLS model: 

 

 
 

This model explains, surprisingly, 93% of the variation in price with a validity of 89%.  
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Now, the inner relation shows strong correlation. 
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The t1/t2 plot shows some grouping by Model and one outlier, observation 75 (Ku345). 
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Having looked at the data we found that there is only one car of model 340. We might choose to 
exclude this car as this car design is not well represented in the data, or, alternatively, we could 
include more data for 340 cars. 
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The wc1/wc2 loading plot shows the correlation structure among the variables. 
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The scaled and centred regression coefficients show the importance of the X variables for the 
prediction of the price. 
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Most important for the price were Engine and Year, followed by Mileage, Combi, 850, and GL. In 
Sisjön they seemed to have the highest prices. 
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We may look at the predicted prices and compare them with the assigned prices. Cars of interest to us 
are of course those where the assigned price is lower than the predicted. 
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A better way of studying the differences is to plot the Price residuals, i.e., the difference between the 
assigned and the predicted prices (Hint: Plot/List | Column Plot | Y VarRes | Price | A=2). 
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The most interesting car seems to have a price that is about 18.000 SEK lower than the assigned price. 
To find the exact differences we used Predictions | YPred | List. Below are parts of this list: 

 
 

We find that car 26 seems to be the best buy - the assigned price is 155.000, while the predicted price 
is 174.000. The prediction for the excluded car, number 61, is 163.000, which corresponds well with 
the assigned price of 171.000. 

Conclusions 
An analysis of the information in the advertisement enabled the best buy, car 26, to be identified. 
Surprisingly strong relationships were discovered between the car price and the X-variables. The 
selling site Sisjön tends to have the highest prices. 
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MVDA-Exercise THICKNESS 
Thickness of Polymer Disks 

Background 
As part of a quality control scheme in a process manufacturing polymer disks, nine thickness 
measurements were taken on the disks produced. The first five measurements, G1 to G5, were taken 
near the middle of the disks and the other four, G6 to G9, were made on the periphery (see picture). 
The objective was to produce disks with uniform thickness within given specification. Problems 
stemmed from small but expensive increases in the number of disks discarded. 

 

 

   8 
 
  2  3 
 7  1  9 
  4  5 
 
   6 
 

Objective 
We would like to answer the following questions: 

a. How many components are there in the data? Are there outliers? 

b. After removing outliers, can we interpret the components and detect production failure? 

c. Are there any groups? Can they be interpreted? 

d. Do you see any trends? 

e. Can we find and interpret additional outliers from the DModX plot? 

Data 
The data set consists of nine thickness measurements made on 184 disks manufactured between 
October and November 1991. The data are given as deviations from the target. 
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Tasks 

Task 1 
Create a new project and import the data, Thicknes.xls. The imported file should contain 184 
observations and 9 variables. 

Task 2 
Make a first PC model for overview using non-scaled data (Hint: Work Set|New|Scale|Set 
Scaling|None and press SET). Compute four PCs. Save the model. Plot t1/t2 and t3/t4. Do you see any 
outliers? Plot p1/p2, and interpret why the outliers in t1/t2 differ from the main cluster. Try also the 
contribution technique to find the reasons for the outliers (Hint: Contribution|Scores). Evaluate 
average against observation 39 for example. 

Task 3 
Create a new model. Modify the work set by removing the four outliers 39, 40, 111, and 155. Extract 
four components and save the model. Interpret the model. 

Task 4 
Plot t1/t2 and t3/t4. Do you see any clustering in either plot? Plot the corresponding loading plots and 
interpret the groupings. Plot t1, t2, t3 and t4 vs Num (run order). Are there trends present? Look in the 
corresponding loading plots to interpret the trends. 

Task 5 
Look for moderate outliers and anomalies in the observations (disks) over time by plotting DModX 
(distance to model), Analysis|Distance to model. Do you see any outliers? Looking at the residuals, 
can you explain why the aberrant samples are outliers? Use Analysis|Contribution|Distance to model 
X-block. Using the list function in SIMCA (Plot/List|Lists|X Var Res) it is also possible to list the 
residuals for specific observations. 
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Solutions to THICKNESS 

Task 2 
A four-component PCA-model was generated to overview the data.  
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Four clear outliers can be identified in the t1/t2 score plot; observations 39, 40, 111 and 155.  
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Contribution plots reveal which variables are responsible for the outliers. Here we have made 
contribution plots focussing on the difference from the projection centre to observations 39, 40, 111 
and 155. 
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The interpretation of the four contribution plots indicates that:  

• 39 is thicker in all measurements 

• 40 is also thicker all over but not as extreme 

• 111 is thicker in the interior part 

• 155 is thicker in one of the measurements, G6, on the periphery. 
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Task 3 
The outliers 39, 40, 111 and 155 were removed. The results after computing four components are 
shown below. 

 

Task 4 
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The score plot, t1/t2, shows no groupings, but t3/t4 looks a little more suspicious. The first component 
expresses general disk thickness. The second component reflects shape variations (convexity or 
concavity). The third component explains a trend in data (discussed below). The fourth component is 
hard to interpret. 
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The observations are predominantly located in the middle region of the t3/t4 score plot, but there are 
some observations that are scattered around this main cluster. The periphery variables G6, G7 and G8 
are responsible for most of this additional variability. 

 

When we look at Num/t1, Num/t2, Num/t3 and Num/t4 we can see an upward trend in the Num/t3 plot. 
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The loading plot shows that the trend in Num/t3 is most likely due to an increase in G8.  

 



 

Copyright Umetrics AB, 02-12-18  Page 7 (9) 

-1

0

1

0 20 40 60 80 100 120 140 160 180

XV
ar

(G
8)

Num

thicknes.M2 (PCA-X), PCA 4 outliers excluded
XVar(X-Var G8)

-0.80

-0.60

-0.40

-0.20

0.00

0.20

0.40

0.60

0.80

0 20 40 60 80 100 120 140 160 180

XV
ar

R
es

[2
](G

8)

Num

thicknes.M2 (PCA-X), PCA 4 outliers excluded
XVarRes[Comp. 2](X-Var G8)

 

Detecting the change in G8 like this actually hints at the solution to the problem. This shift is not so 
obvious when we look at the raw data (above left), but if we look at the residual in G8 after two 
components (above right) we can see a very clear trend. This trend is then modelled by the third 
component. 
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If the raw data for G8 are compared with the raw data for G3 (above left), it is hard to detect 
systematic differences, but if the residuals after two components are compared (above right) is it easy 
to see a trend in G8 but not in G3. 
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Task 5 
In order to look for moderate outliers, i.e. observations that do not conform to the model and break the 
general correlation structure, it is recommended to make DModX plots. 
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There are some moderate outliers in DModX. The causes for moderate outliers can be found in the list 
of variable residuals (VarRes). Below we see that observation 118 has large residuals, positive and 
negative, in most variables: a skew disk. 

 
115 08NOV91:08:52 -0.0478348 0.104162 -0.0688835 -0.130647 0.179184 0.0439014 0.00388044 0.0150761 -0.104346 

116 08NOV91:08:55 0.0153376 0.0209526 -0.0749038 -0.0108951 0.0557913 -0.0212192 -0.0371368 0.00742719 0.0472173 

117 08NOV91:08:57 -0.0472704 0.106502 -0.109305 -0.0905104 0.180579 0.0259939 0.00428896 0.00899075 -0.0822334 

118 08NOV91:08:59 -0.145346 -0.39204 0.367836 0.471846 -0.353768 0.10701 0.17638 -0.108204 -0.130022 

119 08NOV91:09:12 -0.0244482 0.000894054 0.0371441 -0.0207893 -0.0220188 -0.0160079 -0.0580029 0.0125626 0.087882 

120 08NOV91:13:26 0.0415702 0.0230015 -0.115645 0.0141929 0.0333021 -0.0632847 -0.0722373 0.0112777 0.134332 

121 08NOV91:13:34 -0.0707664 -0.0402284 0.167343 -0.144632 0.00242643 0.0126807 -0.195748 0.0504382 0.20472 

 

In the contribution plot it can also be seen that observation 118 has large residuals, both positive and 
negative, see below. 
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Conclusions 
Based on cross-validation, there are two-four significant components for this data set. The first 
explains the thickness variations, the second explains the shape (if the disk is convex or concave) and 
the third explains a trend in the data. The fourth component is hard to interpret. The are no groupings 
in the first two components, but in the third and the fourth there is some clustering. These groupings 
can be interpreted by looking in the corresponding loading plots. Some moderate outliers can be seen 
in the DModX chart. These outliers can be interpreted by looking in the contribution/distance to 
model plot for the respective observation. 
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MVDA-Exercise CUPRUM 
MSPC of an electrolysis process 

Background 
In an electrolysis process very pure copper (>99.998%) was produced. To monitor the quality of the 
copper, the levels of eight impurities (Ag, Ni, Pb, Bi, Sb, As, Te, and Se ) were determined. These 
impurities were weighted together to form the total analysis index, TAI, which is used as an overall 
index to determine the quality of the copper. The problem for the manufacturer was that the univariate 
TAI index did not provide enough information about the product quality. Hence, the manufacturer 
wanted to see if multivariate modelling could be used to determine the quality of the copper more 
accurately. 

Objective 
The objective with this exercise is to contrast univariate and multivariate control chart approaches, 
and to demonstrate how the use of the TAI index gives misleading results with regard to outlier 
detection and copper quality determination. The objective is also to introduce how PCA-results may 
be displayed graphically in multivariate control charts. Multivariate Shewhart, cumulative sum 
(CuSum) and exponentially weighted moving average (EWMA) control charts are used and 
compared. 

Data 
The dataset has 730 observations (2 samples per day during one year of copper production) and 9 
variables (Ag, Ni, Pb, Bi, Sb, As, Te, Se and TAI). 

Tasks 

Task 1 
Create a new project with the Cuprum data in CUPRUM.XLS. First we have to check the data. Make 
histograms of the variables (DataSet/Quick Info/Variables or Plot/List/Histogram Plots, Select DS1 
and VarDS).  

Task 2 
Now, we are going to make a univariate quality analysis by looking only at the TAI variable. Create a 
line plot of TAI as a function of time (Plot/List/Line Plots, select DS1/VarDS/TAI for the Y-Axis and 
DS1/Num for the X-Axis; Use None as plot label). Investigate samples 111 and 302 (Use the Yellow 
flag button in the toolbar). What may be said about their quality? Are they similar or dissimilar with 
regard to copper quality? 

Task 3 
According to TAI, samples 111 and 302 are comparable. The problem for the manufacturer was that 
customers did not find samples 111 and 302 similar. We will use PCA to try to understand and 
explain this. Make sure that variables 1-8 have been log-transformed. (In: Work set/New, use the tab 
marked Transform. Select variables 1-8 and log-transformation). 

Make sure that the TAI-variable is excluded from the workset before calculating the PC:s. Run PCA 
and extract the first two components. Create necessary score-, loading- and contribution plots, and 
interpret these. Why are samples 111 and 302 of dissimilar quality? 
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Task 4 
To overview a PC-model, we may plot Hotelling’s T2 as a function of time. Make a Shewhart control 
chart of T2 and DModX (Plot/List/Control Chart, select Shewhart and T2 comp 2). Investigate 
samples 167, 195, 228, 338, 399, 577 and 611. These samples deviate in different ways from the 
majority of the copper samples - How? Compare with the time series plot of TAI, which you created 
in Task 1. Do you find the same information with TAI? 
 

Task 5 
It is also possible to monitor the scores themselves and not their summary T2. Let us focus on t1. Make 
Shewhart, CUSUM and EWMA control charts of t1 and compare these. Use subgroup size = 2 for the 
latter two. Which chart is most useful for the copper electrolysis process? 
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Solutions to CUPRUM 

Task 1 
We see that all nine variables are skewed to the right. This indicates that the log-transform is 
appropriate. As a rule of thumb, a skewness test > 2 indicates strongly skewed data. Six variables (Ag, 
Ni, Pb, Bi, Te and Se) may therefore benefit from log-transformation. The TAI index, being a 
weighted sum of the other variables, is more normally distributed than most of the variables. To make 
things easy we log-transform variables 1-8, but leave TAI as it is, since it will not be used in the PCA 
modelling. 
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The Quick Info shows, in addition to the histogram, some statistics including the skewness. 
 

 
 

Task 2 
A line plot of TAI is shown below. A TAI value of 8 is the critical quality limit and copper samples 
with TAI exceeding 8 will be discarded. Certain samples have been marked for comparative purposes. 
Sample 111 has TAI = 8.1 and is just outside the critical quality limit and sample 302 has TAI = 7.8 
making it just inside this limit. According to TAI, samples 111 and 302 are comparable. However, the 
problem for the manufacturer is that these samples are perceived by customers to be of very different 
quality. 
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Task 3 
A two-component PCA model gave R2X = 67% and Q2 = 41%, which are reasonable values for this 
type of process. 
 

 
 

The t1/t2 score plot reveals that samples 111 and 302 are not of comparable quality. Using the 
corresponding loading plot we can interpret the first score as reflecting “average” impurity and the 
second score is modelling deviations from this “average” impurity. Copper samples to the far left in 
the score plot have the best quality (lowest levels of impurities) and those on the right-hand side the 
poorest quality. Samples 111 and 302 have different types of impurities. Sample 111 has 
comparatively high levels of Bi, Sb and As (see the contribution plot also). Sample 302 has high 
levels of other impurities, viz. Ag, Ni, Pb, Te, Se and to some extent As. This information was lost 
when summarising the eight variables as the TAI index. 
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Why was this information lost using TAI? The answer is that the impurity variables are correlated and 
migrate “up and down” in two clusters. They do not vary independently. Hence, the data analysis 
must capture these variable correlations. The TAI scale does NOT capture these correlations, because 
it is a weighted sum of the original variables. The PCA model is based on projections to latent 
variables, which model these variable correlations, and therefore are better summaries of the original 
variables. 
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Task 4 
Hotelling’s T2 may be used to find samples which deviate strongly from the model. We can instantly 
see that samples 167, 195, 228, 399 and 577 are strong outliers. Another tool, DModX may be used to 
detect moderate outliers such as samples 338 and 611. Moderate outliers break the general correlation 
structure, and are thus the tricky samples to identify. They lie away from the plane of the PC model 
and hence are not picked up by the Hotelling’s T2.  Having understood these two types of outliers, we 
now realise the misleading nature of the univariate approach. The TAI scale is unable to distinguish 
between these two types of outliers and hence vital information goes undetected. 
 

0

10

20

100 200 300 400 500 600 700

M
3.

Ts
qu

ar
e[

2]

Target(M3)

T2Crit(95%)
T2Crit(99%)

 

0

1

2

3

100 200 300 400 500 600 700

D
M

od
X[

2]

DCrit (0.05)

 

167 
195 

228 

338

399 577

611 



 

Copyright Umetrics AB, 02-12-18  Page 7 (8) 

2

4

6

8

10

12

14

0 100 200 300 400 500 600 700

TA
I

Num

cuprum.DS1 cuprum
Var(TAI)

302111

167

195 228

338

399400

577
611

147

 
 
 

Task 5 
The value of λ estimated from the data is 0.09. This corresponds to a long memory and hence the 
Shewhart chart (which corresponds to λ = 1) is inadequate for this process. EWMA is more 
appropriate. The use of subgroup size 2 (sample size) for EWMA results in a smoothing of the data, 
rendering it easier to detect small process shifts. The small λ-value means that the CUSUM control 
chart may also be appropriate. In fact, here a relatively long period of systematically negative 
deviations from the process mean is easier to detect than in the EWMA chart. This is vital information 
for a process operator or a quality engineer.  

 
 

 

 
 
 
Shewhart for t1. 

 

 
 
 
EWMA for t1 
(sample size = 2). 
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CuSum for t1 
(sample size = 2) 

 
 

Conclusions 
In this copper plant, the use of the TAI index was not very successful. The two samples 111 and 302 
were claimed to have similar quality, and no indication of their completely different impurity patterns 
was acquired. However, PCA suggested that these samples were not of comparable quality, because 
the two samples were situated far apart in the score plot. The loading plot provided clues for the 
interpretation by indicating two kinds of impurity profiles. This is possible because PCA models the 
correlation structure among all quality variables. The eight quality variables migrate up and down in 
clusters and do not vary independently of each other. This information was not shown by the TAI-
scale. 
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MVDA-Exercise SURFACTANT 
QSAR modelling of aquatic toxicity and washing performance of non-ionic surfactants 

Background 
Non-ionic surfactants are important in commercially available detergent mixtures, since they extract 
the hydrophobic part of the soil from the fabric surface into the washing solution. The non-ionic 
surfactants used in detergent blends are often ethylene-oxide (EO) based and consist of several kinds 
of mixtures with varying molecular weight distributions (due to the polymerisation process used in 
their manufacturing). The surfactant molecule is composed of two parts, a hydrophilic and a 
hydrophobic moiety. It is the hydrophilic moiety that can be either ionic or non-ionic. Because non-
ionic surfactants are increasingly used today, a general awareness exists of their possible deleterious 
effects on the environment. Quantitative Structure-Activity Relationship (QSAR) modelling provides 
an interesting instrument for exploring the adverse effects of non-ionic surfactants. 

This exercise has two phases. Phase 1 deals exclusively with aquatic toxicity data. Phase 2 also 
involves washing performance characteristics. 

Objective 
The objective of this study was to investigate relationships between chemical properties and aquatic 
toxicity/washing performance of non-ionic surfactants.  

Phase 1 Data  
Lindgren1 and Uppgård2 carried out a multivariate characterisation of 36 commercial non-ionic 
surfactants. They were able to compile 19 chemical descriptors. These non-ionic surfactants were 
tested for their aquatic toxicity towards two species, the fairy shrimp Thamnocephalus platyurus (TP) 
and the rotifier Brachionus calyciflorus (BC). The test results were registered as a relative toxicity 
scale for each species. The chemical and biological variables are explained below. Note that six 
surfactants, numbers 2, 5, 8, 11, 21 and 31, were not tested in the BC model system. 

Phase 1 Tasks 

Task 1 
Run SIMCA and import SURFACT1.SIM (or *.dif). Give the project a unique name. This file is 
composed of 36 observations (surfactants) and 21 variables. Define variables 1-19 as X and variables 
20 and 21 as Y. Run PCA on the X-block. How many components can you extract using cross-
validation? How many of these are really meaningful? Look at score and loading plots. What do you 
see? 

The four first PCs can serve as a basis for multivariate design, in which a representative training set of 
surfactants is selected. D-optimal design was used to identify a suitable training set consisting of 10 
surfactants. The selected ones were 4, 6, 9, 10, 12, 13, 15, 18, 20, and 23, which are encircled in the 
solutions section. The G-efficiency of this design was 76.2%. 

Task 2 
Define a new training set consisting of the ten surfactants listed above. Use the 19 X-variables and the 
2 Y-variables and run PLS. Interpret the QSAR. Can the chemical properties of the surfactants be 
used to model the aquatic toxicity? Make predictions for the 26 surfactants in the validation set. 
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Task 3 
Try to identify a 24-1 fractional factorial design (FFD) in the four Principal Properties (PPs) listed in 
Task 2. Such a design would encode 8 surfactants. Supplement these eight with two centre-points so 
that you get a training set with 10 members, comparable to the size of the D-optimally selected 
training set. Run PLS and examine the new QSAR and its predictive ability. Compare with Task 2. Is 
the FFD strategy purposeful for this data set? 

There is no solution given to this task!!! 

Phase 2 Data 
Lindgren and Uppgård later expanded the multivariate characterisation to embrace 38 non-ionic 
surfactants, and now their focus was placed on washing performance. For this kind of surfactant there 
has always been a trade-off between washing performance and biodegradation. Washing performance 
means the ability to remove soil from dirty fabric. A lot of the intrinsic surfactant properties are 
regulated by the properties of the surfactant side chain. For instance, branching gives good washing 
performance but poor biodegradability, whereas straight chains have the reversed pattern. Thus, it 
appears that a useful compromise might be a straight chain with some degree of branching. This was 
the working hypothesis of the current study.  

The questions asked by the researchers now were: (1) Is it possible to quantitatively model 
performance of technical blends as a function of chemical properties? (2) Which representative 
surfactants should be studied? 

Phase 2 Tasks 

Task 4 
Start a new project and import SURFACT2.SIM (*.dif). Give the project a unique name. This data file 
contains 38 observations and 23 variables. The 19 X-variables are the same as for Phase 1. The four 
Y-variables are detergency efficiency (Ydet, var 20), concentration of surfactant (Yconc, var 21), and 
washing temperature (Ytemp, var 22) at optimal washing conditions, and the fairy shrimp toxicity 
(Ytox, var 23). Define the X- and Y-blocks according to the information above. The software will 
now prompt that some observations and variables are to be deleted. Do NOT accept this. Run 
PCA on the X-block, make score and loading plots, and interpret the model. 

Task 5 
In Task 4 it was found that eight surfactants were not chemically interesting. Remove these eight 
compounds (numbers 3, 10, 13, 14, 17-19, and 29). Remember that this removal can be done 
interactively, so there is no need to use the WorkSet dialogue. The software will now prompt that 
some observations and variables are to be deleted. Do NOT accept this. Run PCA on the X-block, 
make score and loading plots, and interpret the refined model. 

Task 6 
Select surfactants 2, 5, 8, 9, 11, 30, 31, 33, 37, and 38 as the new training set. The software will now 
prompt that some observations and variables are to be deleted. Do NOT accept this. Fit a PLS 
model between the 19 X-variables and the four Y-variables. Change the number of cross-validation 
groups (View/Project Options) from default = 7 to 10 (because there are ten substances in the training 
set). Review the fit and interpret the model. Which chemical properties are likely determinants for 
washing performance and aquatic toxicity? Is it rational to handle all four responses in the same 
QSAR model, or should more than one QSAR be calculated? 
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Data table Phase 1 
 

  Mw C redC redC/C Eow Griffin Davis CPP redCPP CP dCP Chains RMChain F-alcohol maxEO w33EO w66EO CMC logP BATP BABC 
1 B-048 641 13 9 69.23 10 13.75 6.23 0.27 0.37 67 27.5 1 100 4.99 8 11 6 0.12 5.661 0.0469 0.0956 
2 B-058 553 13 9 69.23 8 12.75 5.53 0.3 0.41 44 23 1 100 5.28 7 13 6 0.079 5.532 0.07  
3 B-065 684 16 16.1 100 10 12.87 4.75 0.27 0.27 76 4.5 2 95 4 8 16 9 0.001 7.768 -0.8842 -0.9175 
4 B-09 669 15 8.5 56.67 10 13.17 5.28 0.27 0.44 54 29 1 100 0 10 9 5.7 0.31 6.109 -0.0788 0.0514 
5 B-160 474 14 13.7 100 6 11.14 4.49 0.34 0.34 40 10 2 85 6.9 5 11 7 0.013 6.453 -0.7612  
6 B-267 581 15 8.5 56.67 8 12.13 4.58 0.3 0.5 16  1 100 0 7 8 5.2 0.031 5.98 -0.0611 0.0435 
7 B-271 612 15 8.5 56.67 9 12.53 4.82 0.29 0.48 32 10 1 100 0 8 8.3 5.2 0.052 6.044 -0.0036 0.1141 
8 B-535 393 11 10.9 98.91 5 11.22 5.43 0.38 0.38 27 10.5 2 85 11.34 5 9.4 5.7 0.11 4.801 -0.2745  
9 BOX-257 515 13 13.2 97.92 7 11.97 4.96 0.32 0.32 47 11.5 7 28 7.3 5 12.2 7.6 0.042 5.988 -0.6891 -0.4368 
10 BOX-4511 707 15 14.1 96.23 11 13.7 5.82 0.25 0.26 87 22.5 5 36 0 9 18 10.2 0.23 6.775 -0.7401 -0.5716 
11 BOX-915 377 10 9.8 98.69 5 11.68 5.95 0.37 0.38 36 10 6 54 12.99 4 9.2 7 0.3 4.272 -0.0009  
12 BOX-918 508 10 9.6 97.65 8 13.88 7.05 0.3 0.3 77 33 6 42 7.4 6 12 6.8 0.33 4.465 0.291 0.6124 
13 GO-100 704 18 17.7 100 10 12.47 4 0.27 0.27 76 9 2 85 3.18 11 16.5 10.6 0.05 8.697 -0.8123 -0.8007 
14 GT-110 730 16 16.2 100 11 13.28 5.06 0.25 0.25 90 7.5 2 90 2.77 11 12.5 8.8 0.005 7.833 -0.9397 -0.979 
15 GUD-050 393 11 10.5 95.64 5 11.22 5.43 0.38 0.39   2 52 18.85 3 10.8 8.3 0.1 4.801 -0.1271 0.3537 
16 GX-060 465 13 9 69.23 6 11.38 4.83 0.34 0.48   1 100 7.45 3 8.9 6.9 0.034 5.404 0.1088 0.0669 
17 HDo-11 752 18 17.9 100 11 12.86 4.25 0.25 0.25 76 6 2 95 1.69 10 15.2 7.8 0.1 8.407 -1.094 -0.9471 
18 HDo-7 575 18 17.9 100 7 10.68 2.85 0.32 0.32 30  2 95 4.9 6 13.2 8.2 0.005 8.149 -0.8649 -0.8148 
19 HDo-9 664 18 17.9 100 9 11.91 3.55 0.28 0.28 58 7 2 95 2.97 8 14 7.8 0.03 8.278 -0.9087 -0.9327 
20 Is-11 671 12 8 66.67 11 14.45 7.05 0.25 0.36 72 22 1 100 6.43 10 19 9.1 0.16 5.587 0.5646 0.5254 
21 Is-8 539 12 8 66.67 8 13.08 6 0.3 0.43 16  1 100 14 8 15 11.7 0.08 5.393 0.2735  
22 Is-9 583 12 8 66.67 9 13.61 6.35 0.28 0.4 59 16 1 100 10.86 9 15.4 10.9 0.09 5.458 0.4146 0.5396 
23 LON-50 379 10 7 69.5 5 11.64 5.9 0.37 0.52 34 9 2 95 13.3 5 11.3 8.9 0.899 3.882 0.8723 1.0786 
24 LON-60 423 10 6.9 69 6 12.51 6.25 0.34 0.47 36 13 2 90 14.7 5 9.9 7.4 0.64 3.947 0.8547 0.9235 
25 LON-70 647 10 7 69.5 7 13.22 6.6 0.32 0.44 61 18 2 95 12.04 7 11.3 7.6 0.18 4.011 0.9724 1.1068 
26 LON-80 511 10 6.9 69 8 13.8 6.95 0.3 0.41 80 23 2 90 5.4 9 15.4 8.4 0.19 4.075 1.0936 1.0963 
27 LTO-10 641 13 8.5 65.38 10 13.75 6.23 0.27 0.39 70 23 5 50 6.91 9 15.7 8.6 0.1 5.661 0.0263 -0.2006 
28 LTO-8 553 13 8.6 66.15 8 12.75 5.53 0.3 0.43 61 12.5 4 60 7.01 8 15 8 0.07 5.532 -0.1726 0.0583 
29 M-1618/10 684 16 16.1 100 10 12.87 4.75 0.27 0.27 69  2 95 3.79 9 15.6 8.8 0.004 7.768 -1.0837 -0.8868 
30 M-24/60 477 14 13.9 100 6 11.08 4.4 0.34 0.34 32 3 2 95 10.49 5 10.3 7 0.04 6.453 -0.662 -0.1699 
31 MO-11/50 393 11 11 99.55 5 11.22 5.43 0.38 0.38 36 14 2 95 10.71 6 12.5 9.5 0.24 4.801 0.492  
32 MO-13/100 641 13 8.6 66.15 10 13.75 6.23 0.27 0.39 78 16.5 4 60 4.85 10 17.2 8.7 0.07 5.661 0.0772 0.1942 
33 MO-13/80 553 13 8.6 66.15 8 12.75 5.53 0.3 0.43 48 17 4 60 23.82 5 10.3 8 0.037 5.532 -0.1131 0.1933 
34 So-10 631 12 7.2 58.13 10 13.96 6.56 0.27 0.43 74 29 2 85 0.21 10 12.2 7.2 0.19 5.432 -0.1461 0.2101 
35 So-6 455 12 7.2 58.13 6 11.62 5.16 0.34 0.55 20  2 85 0.27 7 9.8 6.3 0.022 5.175 -0.2703 0.1913 
36 So-9 587 12 7.2 58.13 9 13.51 6.21 0.28 0.45 59 32 2 85 0.23 9 12 6.9 0.02 5.368 -0.1702 0.2027 
 
Mw = molecular weight; C = the number of carbon atoms in the hydrophobic part of the surfactant; red C = the number of carbon atoms in the longest chain of the hydrophobic part of the surfactant; redC/C = the ratio between the longest chain and the total 
number of carbon atoms in the hydrophobic part of the surfactant; Eow = the wanted moles of ethylene oxide per fatty acid alcohol; Griffin = The hydrophilic-lipophilic balance according to Griffin; Davis = the hydrophilic-lipophilic balance according to Davis; 
CPP = the critical packing parameter according to Israelachvili; redCPP = the critical packning parameter with respect to whether the hydrophobic part is branched or not; CP = the cloud point; dCP = the highest derivative of the transmittance-temperature 
curve; Chains = the number of different carbon chains in the hydrophobic part; RMChain = the molar ratio between the dominating type of carbon chain and the total carbon chain in the hydrophobic part of the surfactant; F-alcohol = the ratio of non-
ethoxylated fatty alcohol in the surfactant product; maxEO = the position of the peak in the ethylene-oxide distribution chromatogram; w33EO = the width of the digitized chromatogram at 33% peak height; w66EO = the width of the digitized chromatogram at 
66% peak height; CMC = the critical micellar concentration; log P = the logarithm of the octanol/water partition coefficient; BATP = relative toxicity scale for Thamnocephalus platyurus (low values imply high toxicity); BABC = relative toxicity scale for 
Brachionus calyciflorus (low values imply high toxicity). 
 
References: (1) Åsa Lindgren, PhD Thesis, Umeå University, 1995; (2) Lise-Lott Uppgård, Graduate Thesis, Umeå University, 1995. 
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Phase 1 Solutions 

Task 1 
PCA gives 4 principal components. The first two PCs account for 64% of the variation and the t1/t2 
and p1/p2 plots are therefore good summaries of the data set. In the score plot a weak grouping can be 
spotted. The surfactants in the lower right quadrant are the most hydrophobic. The variables C, redC, 
redC/C and log P estimate the surfactants’ hydrophobic properties. 
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The scores of the first four PCs are given on next page. 
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ObsNum ObsName t[1] t[2] t[3] t[4] 
1 B-048 0.83759 2.048 -1.4613 -0.66729 
2 B-058 -0.51709 0.67629 -1.5995 -0.31242 
3 B-065 3.6044 -1.7779 0.33479 0.85088 
4 B-09 0.85234 1.8352 -2.8646 -1.203 
5 B-160 -1.0708 -3.0394 -0.07692 -0.40928 
6 B-267 -1.1031 -0.52616 -3.611 -1.5443 
7 B-271 -0.2828 -0.12617 -3.4053 -1.2217 
8 B-535 -3.5852 -2.0931 0.083152 -0.37177 
9 BOX-257 -0.59774 -1.7451 3.1552 -2.3 
10 BOX-4511 4.0136 1.0717 3.1236 -0.67645 
11 BOX-915 -4.0535 -1.1609 2.7084 -1.1022 
12 BOX-918 -0.80209 2.3209 3.4349 -2.0985 
13 GO-100 4.7551 -2.1895 0.41968 1.1292 
14 GT-110 4.5119 -0.93985 0.1025 0.20453 
15 GUD-050 -3.8573 -2.16 1.7651 0.53897 
16 GX-060 -2.8362 -1.5066 -1.9209 -0.12165 
17 HDo-11 4.8436 -2.0024 -0.34121 0.13191 
18 HDo-7 1.1991 -5.1752 -0.77536 0.32409 
19 HDo-9 3.1694 -3.3127 -0.57714 -0.06867 
20 Is-11 2.3224 3.3702 -0.11888 1.8205 
21 Is-8 -0.75404 1.0629 -0.34064 3.0001 
22 Is-9 0.65145 1.8641 -0.11081 2.4385 
23 LON-50 -4.9445 0.40147 0.3202 2.3674 
24 LON-60 -4.1427 0.96361 0.10604 1.1818 
25 LON-70 -1.6425 1.9531 -0.18382 0.63593 
26 LON-80 -0.39122 3.0882 0.4335 0.89223 
27 LTO-10 1.3765 2.422 1.6143 -0.832 
28 LTO-8 -0.05642 0.76566 0.79037 -0.40352 
29 M-1618/10 3.6029 -1.4635 0.13154 0.60842 
30 M-24/60 -1.3661 -3.5374 -0.27137 0.14087 
31 MO-11/50 -2.8362 -1.5717 0.88482 1.6079 
32 MO-13/100 1.8868 2.2799 1.1688 -0.11234 
33 MO-13/80 -1.6581 0.3024 1.1508 -0.28345 
34 So-10 0.9487 3.3713 -1.0187 -0.69582 
35 So-6 -2.7954 -0.07021 -2.2114 -1.1645 
36 So-9 0.22218 2.7325 -1.3607 -1.1285 
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Task 2 
The PLS analysis yielded a two-component model with excellent statistics. The correlation between 
the chemical properties and the aquatic toxicity endpoints is stable, as seen in the PLS score plots 
(t1/u1, t2/u2). The PLS loading plot, wc1/wc2, suggests that the aquatic toxicity of the surfactants is 
regulated primarily by the hydrophobic properties. Descriptors like C, redC, log P and CMC are the 
most influential and relate to the hydrophobicity. In addition, we can see that the two endpoints are 
strongly correlated. 
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The residuals are of diagnostic interest. The N-plot of residuals for both responses does not unveil any 
outliers. Also the DModX and DModY plots indicate that all surfactants in the training set are well 
modelled. Note that the DModY chart can be viewed as a summary of both N-plots. 

The surfactant QSAR is well founded and can be used for predictions of the surfactants in the 
validation set. Evidently, the model has excellent predictive capability. The training set compounds 
are marked by open triangles in the last two plots. 

0.05

0.1

0.2

0.3
0.4
0.5
0.6
0.7

0.8

0.9

0.95

-1.40-1.20-1.00-0.80-0.60-0.40-0.200.00 0.20 0.40 0.60 0.80 1.00

Pr
ob

ab
ilit

y

Surfact1.M2 (PLS-Class(1)), PLS training set
Normal Probability for  YVarResSt[Comp. 2](YVar BATP)

10

4
9

15
6

12
13
23

20

18

0.05

0.1

0.2

0.3
0.4
0.5
0.6
0.7

0.8

0.9

0.95

-1.50 -1.00 -0.50 0.00 0.50 1.00

Pr
ob

ab
ilit

y

Surfact1.M2 (PLS-Class(1)), PLS training set
Normal Probability for  YVarResSt[Comp. 2](YVar BABC)

4

10
6
9

23
15

18
20

13

12

 

0.60

0.80

1.00

1.20

1.40

1.60

1 2 3 4 5 6 7 8 9 10

D
M

od
X[

2]
(N

or
m

)

Num

Surfact1.M2 (PLS-Class(1)), PLS training set
DModX[Comp. 2]

M2-D-Crit[2] = 1.726 

4

6

9
10

12

13
15

18 20

23

D-Crit(0.05)

0.80

1.00

1.20

1.40

1.60

1.80

2.00

1 2 3 4 5 6 7 8 9 10

D
M

od
Y[

2]
(N

or
m

)

Num

Surfact1.M2 (PLS-Class(1)), PLS training set
DModY[Comp. 2]

4

6

9

10

12 13

15

18

20

23



 

Copyright Umetrics AB, 02-12-18  Page 8 (14) 

Task 3 
There is no solution to this task. 

Phase 2 Solutions 

Task 4 
The PC-analysis gave seven components, but only about four are of appreciable size. 
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The scores and loadings of the two first components are plotted below. The third and fourth 
components only account for 15% and 8% of the variation, and are therefore not considered in this 
brief interpretation. 
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Based on the loadings the authors interpreted the first PP as surfactant lipophilicity, and the second 
PP as a reflection of the hydrophobic/hydrophilic balance of the surfactants. This because high values 
for PP1 (high lipophilicity) correspond to high values for log P, ethylene oxide (EO) content, 
molecular weight (Mw), and cloud point (CP), and low values for the amount of non-ethoxylated fatty 
alcohol (F-alcohol), the critical packing parameter (CPP) and the reduced packing parameter 
(redCPP). The interpretation of the second PP was based on the fact that high values of PP2 (low 
hydrophobic/hydrophilic balance) correspond to low values of the two indices reflecting 
hydrophobic/hydrophilic balance (Davis and Griffin) and high values of redC/C, i.e., a branched 
hydrophobic part. 

The distribution of surfactants in the score plot made the researchers aware of two strong clusters. 
Since the smaller cluster, located in the upper right-hand part, comprises surfactants that are too 
lipophilic for the experimental objective, the eight surfactants belonging to this cluster were excluded. 
The reason for this action was that if a surfactant is very lipophilic, it might be hard to maintain the 
desired balance between good washability and biodegradation within reasonable time. 
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Task 5 
A new PCA was made on the remaining 30 detergents. This model displayed the performance 
statistics R2X = 0.76 and Q2 = 0.52, after three components. The first PP explains 38%, the second 
21%, and the third 17% of the total variation. The updated PPs are plotted below. Their interpretation 
is similar to the previous PPs.  
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Subsequently, the three updated PPs were used in multivariate design. The authors did not use any 
statistical experimental design (factorial, fractional factorial, D-optimal,...), but identified ten 
representative non-ionic surfactants providing a reasonable coverage of a restricted PP-area. The 
location of the ten surfactants is indicated in the score plots above by open boxes. These surfactants 
form the training set (surfactants 2, 5, 8, 9, 11, 30, 31, 33, 37, and 38). 
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Task 6 
The four responses (YDet, YConc, YTemp & YTox) and the 19 chemical descriptors were modelled 
simultaneously with PLS. Three PLS components were obtained, and the cumulative R2Y- and Q2-
values are plotted below. After three components R2Y amounts to 0.78 and Q2Y to 0.49, which are 
excellent values considering that technical surfactant blends are being investigated, and not pure 
compounds. The right-hand plot below shows R2Y and Q2Y for each response. Evidently, three 
responses, YDet, YConc, and YTox, are modelled and predicted well, and their Q2´s range between 
0.45 and 0.56. The Q2-value of the last response, YTemp, is a little lower (0.41). 
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In order to interpret the PLS model we consider the scores and loadings. A close inspection of the 
t1/u1 score plot shows a mild curvature in the relation between X and Y. This suggests that the second 
model component represents a compensation for non-linearity. However, in the last component the 
inner relation is linear. The overall conclusion is that there is a strong correlation structure between 
the 19 chemical descriptors and the four response variables. 
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The PLS loadings of the first two components are shown below. The third component only accounts 
for 7% of the response variation and is not plotted here. An interpretation of the third component is 
integrated in the overall model interpretation presented below.   

 
 

We see that the four responses are not completely correlated. However, YTemp is moderately 
correlated with YDet, YDet is partly correlated with YTox, and YTox is partially correlated with 
YConc. This partial linking of the responses motivates their treatment in one single PLS model. Plots 
of raw data supporting this conclusion are given below. 
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• YDet: In order to achieve high washing efficiency, the surfactant should contain a short 
carbon chain. This is inferred from the model contribution of the descriptor redC, which 
denotes the number of carbon atoms in the longest chain of the hydrophobic part. 

• YConc: A desired low value of surfactant concentration is modelled as obtainable for 
surfactants with high molecular weight and high molar ratio of dominating chain to total 
number of carbons. 

• YTemp: The washing temperature is influenced by descriptors like molecular weight and the 
number of EO-units. Low molecular weight and few EO-units correspond to low temperature. 

• YTox: Not unexpectedly, the response acute toxicity is well modelled by log P. This kind of 
relationship is often found in QSAR applications in aquatic toxicology. To enable low 
toxicity the surfactants should display low log P (lipophilicity). 

Weighting this together indicates that an almost straight side chain, with some degree of branching, 
should have a good balance between washing performance and toxicity (cf. surfactant no. 37).  

One of the most exciting steps of this application arose when the derived PLS model was used to 
compute predictions of the 28 non-tested surfactants. In this process, the known X-data for these 
compounds were inserted into the PLS model, and the unknown Y-data were estimated. The score 
plot below shows the distribution of prediction set surfactants in the t1/t2 score plane. Surfactants 
close to nr 37 are interesting candidates for further studies. 
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Conclusions 
Non-ionic surfactants of the polyethylene-type form a group of detergents undergoing intense research 
and rapid change. Lindgren and co-workers were able to identify a set of promising surfactants by 
adhering to multivariate methodology. However, the exact identity of the finally proposed surfactants 
has never been disclosed due to trade secrecy reasons.  

The primary conclusions of this application were: 

• All surfactants cannot be tested - multivariate characterisation and design is useful to select 
representative compounds. 

• Strong relationships exist between measured physico-chemical properties of surfactants and 
their performance profiles. 

• Surfactant performance is a multivariate property and must be addressed by measuring a set 
of response variables. 

• Predictions from PLS models are useful to identify interesting surfactants for further 
performance optimisation. 
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MVDA-Exercise PULP 
Modelling a beating process in Swedish pulp mills and prediction of pulp quality parameters 

Background 
The normal way of characterising pulp is to use several different physical and chemical parameters. 
These parameters are highly correlated, which means that pulp can be characterised using only a few 
informative latent variables. To acquire in-depth knowledge about the effect of beating chemical 
pulps, a multivariate investigation was carried out by Lars Wallbäcks.  

Objective 
The main objective of the investigation was to reveal how beating conditions affect pulps of different 
composition. Another objective was to develop a predictive model for the tear index.  

Data 
The starting materials were taken from 7 different Swedish pulp mills. A research institute (STFI) 
performed the physical measurements on the different pulps at 4 times: before beating, after 1 000 
revolutions, after 2 000 rev., and after 4 000 rev. Eighteen classical pulp descriptors were recorded in 
order to carry out the multivariate characterisation. This exercise concentrates on PFI-mill beating. 

Tasks 

Task 1 
Create a new project in SIMCA. Import data from PULP.XLS. Observe that the first two columns are 
observation ID.s. Give the project a unique name. Make sure that 28 observations and 21 variables 
have been imported. Note that the observations from the same mill are 7 observations apart. For 
example, the first mill has numbers 1, 8, 15, and 22 and names (ID.s) 1, 11, 111, 1111. 

Task 2 
Create a summary of the data. Run PCA on all observations and the first 18 descriptors. Extract the 
first two components. Construct a plot of the observations (t1/t2). Are the observations clustered or do 
they show some other pattern? Can you identify any trends? Display the corresponding picture of the 
descriptors (loading plot, p1/p2). Can you explain the trend seen in the score plot? Does t1 separate the 
observations according to revolution? (Hint: variable 21 is the square root of the number of 
revolutions/1 000? Use Plot/List|Scatter Plot to look at this variable.)  

Task 3 
Use the same model as that in the previous example and look at tear index (variable 13) vs. t1. What is 
a likely reason for the scatter of the unbeaten samples? How does the pulp react with beating? 
Looking at score t1, what can you say about the spread of the unbeaten observations compared with 
the fully beaten observations?  

Task 4 
A common way of using multivariate models is to replace variables that are difficult to measure with 
variables that are more easily obtainable. To do this we build a multivariate model from the easily 
measured variables to predict the more complicated variables. Define variables 1-7 as X and tear 
index as Y. Use observations 11, 33, 55, 77, 111, 333, 555, 777, 1111, 3333, 5555, and 7777 as the 
training set. Fit a PLS model and make predictions for the remaining observations. Is it possible to 
compute reasonable predictions for tear index? Repeat this procedure with other variables as Y, e.g., 
burst index (var no 14) or tensile index (var no 9). 
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Explanation of data set: 
Variable no Variable name and abbreviation Swedish abbr’n 
1 Shopper Riegler value, SR SR 
2 Water Retention Value, WRV (%) WRV 
3 WRV of the coarse fraction (%) WRV mesh 
4 Fibre length (Kajaani) (mm) 

Arithmetic average 
Aritm Fl. 

5 Fibre length (Kajaani) (mm)  
Length weighted average 

L. vikt. Fl. 

6 Fibre coarseness (Kajaani) (m/mg) Fl. vikt 
7 Fines fraction, P200 Mesh (%) Finfrakt. 
8 Density (kg/m3) Densitet 
9 Tensile Index (kNm/g) Dragi. 
10 Stretch to break (%) Brott/jn. 
11 Tensile energy absorption (TEA) (J/kg) BrArl 
12 Tensile stiffness index (kNm/g) DrStl 
13 Tear Index (mNm2/g) Rivi. 
14 Burst index (kPcm2/g) Spr_ngl. 
15 Scott Bond (J/m2) ScottB 
16 Surface roughness (Bendtsen) (ml/min) Ytr_het 
17 Air Permeance (Bendtsen) (ml/min) Porositet 
18 Light Scattering coefficient (m2/kg) S 
19  K 
20  Ljush 
21  rmal 

 Solutions to PULP 

Task 2 
The two first components of the PC-model explain 84 % of the variation and predict 75 %. In the 
score plot below it is clear that the score (numerical value) of the first component increases with 
increasing beating. The relation is not linear, however. Different pulps appear to be separated both in 
the first and the second component. 
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The scatter plot of t1 against variable 21 (square 
root of beating/1 000) is shown below. We can 
see that t1 separates the observations with respect 
to beating. Differences in starting material 
composition are believed to be responsible for the 
differences in the starting points.     

The loading plot indicates an increase in fibre 
length with increasing beating. This is in 
agreement with the fibre straightening effect 
associated with PFI-mill beating. 
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Task 3 
The spread of the unbeaten observations indicates a difference in starting material composition. 
However, after beating, the observations define a linear data structure. This means that the beating 
process has made the different pulps more alike. Hence we can develop a model describing tear index 
as a function of beating, but only on beaten samples.  
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Task 4 
PLS analysis yielded a two-component model with R2Y = 0.90 and Q2 = 0.79. According to the 
prediction plot, reliable predictions of the tear index are possible except for the unbeaten samples. 
The next set of plots show modelling and prediction results when using tensile index as the y-variable. 
Interestingly, tensile index is well forecast also for the unbeaten samples. 
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Conclusions 
Although there seems to be fundamental compositional differences between the unbeaten pulps, the 
beating process is able to unify the properties of the various pulps. Important pulp quality 
characteristics, like tear index or tensile index, are well modelled and predicted from the numerous 
easily measured physical and chemical descriptors. 
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MVDA-Exercise SUGAR 
Multivariate calibration 

Background 
Multivariate calibration is an important application of multivariate data analysis. After spectroscopic 
measurements of the samples, with known characteristics (e.g. concentrations/levels/qualities/etc.), 
have been taken a regression model is built using the spectral data as X and the sample characteristics 
as Y. The intention with this exercise is to demonstrate multivariate calibration based on fluorescence 
data. 

Objective 
At a sugar plant in Scandinavia an important quality parameter was the ash content of the sugar, but 
the conventional measurement technique for this response variable was judged to be arduous and 
time-consuming. As a consequence, the goal was to replace traditional wet-chemistry measurements 
with rapid on-line fluorescence techniques. To determine the feasibility of this new technology, the 
applicability of multivariate calibration was explored. More details can be found in the original 
literature source [Bro, 1996].  

Data 
Process data were measured during a campaign of 2.5 days, right from the start-up of the new factory. 
A total of 106 samples (time points, observations) were compiled and by digitising the fluorescence 
spectra 571 X-variables were created. 

 

 

 

Plot of the raw fluorescence 
data (106 spectra). In the 
multivariate modelling, each 
spectrum represents one row 
of the X-matrix. The arrow 
indicates an abnormal 
spectral property exhibited 
by sample number 88. 
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Tasks 

Task 1 
It is instructive to precede the regression analysis with a PCA of the X-data. This tells us about the 
practical rank of X and if there are spectral outliers. Open the file SUGAR.SIM (or *.DIF). It contains 
106 observations and 573 variables. Variables 572 (V1_2, impurity) and 573 (V2_2, colour) are the 
two responses. Give the project a unique name. Select all observations and the 571 X-variables and 
run PCA. Compute the first two principal components. Create the necessary score and loading plots. 
Do you see any spectral outliers in the score plot? What can you say about the loadings? Do they 
resemble the real spectra? 

Task 2 
Change the scaling of the X-variables so that they are mean-centred but not scaled. This is 
accomplished by the commands (WorkSetNew (as model)Scale), and selecting Base “Ctr”. Then 
run PCA and extract two components. Create the same score and loading plots as in the previous task. 
Are there any spectral outliers? What about the loadings? Examine the model residuals as well 
(DModX); do they reveal any moderate outliers outside the critical model distance? 

Task 3 
Next, we want to examine whether the fluorescence data carry any information that is useful for 
modelling and predicting the quality of the final sugar product. When we do this analysis, the 
unrepresentative samples 1-15 and 88 are excluded. Open the file SUG_SORT_ID.DIF, which 
contains 90 observations sorted according to ash content. The first three columns represent 
Primary_ID, Class_ID, and Real_ID. The X-data starts in the fourth column. Define variables 1-571 
as X and 572 as a single Y-variable. We will not use variable 573. Remember to set the scaling of the 
X-variables to base weight “Ctr”. 

Divide the data in two classes, one containing the 45 odd-numbered observations (class 1), and 
another containing the 45 even-numbered observations (class 2). Use unscaled and mean-centred X 
and run PLS. Compute a PLS model on one class and verify predictive ability with the other. Then 
change the role of the two sub-sets and repeat the analysis procedure. Can we make a model that is 
able to predict ash content? 

Task 4 
It might be possible to enhance the predictive power of the calibration models. In order to test whether 
this is possible we will use orthogonal signal correction (OSC). Go to DataSet/Spectral Filters/OSC. 
Select variables 1-571 as X and variable 572 as Y. Select the 45 odd-numbered observations. Use 
default options for transformations and scaling (don’t change the settings). Press Next to extract the 
first OSC component. Save after the first component. Make sure that the additional observations are 
stored in the secondary data set.  

After switching to the new project, prepare for PLS modelling. Select X and Y variables, and only 
Centre the X-data. You may use the AutoFit option in the modelling, but save only one component. 
Evaluate the model, and make external predictions for the secondary data set, which should contain 
the even-numbered samples. Is it possible to improve the predictive power of the model? 

Repeat the above procedure, but select the even-numbered observations for “OSCing”, and the odd-
numbered observations as secondary data set. 
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Task 5 
We will now test the applicability of wavelet analysis for signal compression. Use the same two sub-
sets of data as in the previous task. Go to DataSet/Spectral Filters/Combination OSC/Wavelet. Select 
variables 1-571 as X and variable 572 as Y. Select the 45 odd-numbered observations. Use default 
options for transformations and scaling (don’t change the settings). Press Next to extract the first OSC 
component. Press Next to select wavelet function, wavelet order, and compression method. Select the 
following:  

 
Press Next and select the number of wavelet coefficients representing 99.5% of the total variance. 
Press Next and Save odd-numbered samples in the new primary data set and the even-numbered 
observations in the new secondary data set.  

After switching to the new project, prepare for PLS modelling. Select X and Y variables, and only 
Centre the X-data. You may use the Autofit option in the modelling, but save only the first 
component. Evaluate the model, and make external predictions for the secondary data set, which 
should contain the even-numbered samples. Is it possible to compress data and maintain the same 
predictive power? 

Repeat the above procedure, but select the even-numbered observations for “OSCing” and wavelet 
analysis, and the odd-numbered observations as secondary data set. 

You may also re-apply the outlined procedure where wavelet coefficients describe only 95% of the 
total variance. 

Task 6 
Repeat Tasks 3-5, but for the second response, variable 573, the sugar colour. There are NO solutions 
provided to this task. 
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Solutions to SUGAR 

Task 1 
The first two principal components gave R2 = 0.95. In the t1/t2 score plot we can see how the 
manufacturing process has drifted over time. This is data from a new plant taken from the very start of 
sugar production. We can see that it took a while for the process to reach stability and eventually 
found a region of relatively constant process conditions (thick cluster in the left-hand part). Moreover, 
sample #88 appears to be extreme, which is discernible also in the plot of the raw data (see previous 
pages). Here, we have plotted the loadings versus “Num”, because there is a natural spectral order 
among the sugar variables. With spectral data, the first loading usually closely resembles the average 
raw data spectrum, but in this case it does not. Why? The explanation is that we have run the PCA 
with UV-scaled variables. This means that we have scaled up those parts of the spectra with low 
signal amplitude variation, at the expense of the contribution from those parts that have large signal 
amplitude variation. The solution is to re-run the PCA, but without scaling the X-variables. 
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Task 2 
The first two components yielded an R2 of 0.99. Evidently, there is a comparatively large drift going 
on until around sample 15. From sample 16 onwards, with the exception of sample 88, the process has 
reached a state of comparatively stable operating conditions. The DModX chart also suggests that the 
largest process variation is found at the beginning of the sampling period. The three loading plots 
below indicate that the data contain two independent spectral contributions. However, the first 
loading plot, the scatter plot, is not very informative. This is because loadings from spectral data often 
get a “worm-like” appearance. Instead of the scatter plot, loadings against spectral wavelength is more 
appropriate. The first loading spectrum has a systematic structure and resembles the average 
spectrum. The second loading spectrum captures a small peak in the lower wavelength region of the 
spectra. Evidently, the use of unscaled but mean-centred data seems appropriate in order to enhance 
interpretation. 
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Task 3 
The application of PLS to these two sub-sets produced two-dimensional models of sound explanatory 
and predictive powers. For the odd-numbered training set, the produced model had a goodness-of-fit 
of 81% (R2Y = 0.81) and a goodness-of-prediction of 79% (Q2

int = 0.79). The corresponding values 
for the model based on the even-numbered training set were 84% (R2Y = 0.84) and 82% (Q2

int = 0.82). 
These values are plotted below. The subscript “int” of the Q2’s shows that these estimates were 
derived using internal cross-validation. The similarity of these R2- and Q2-values indicates that the 
two sub-sets are rather well balanced and have similar characteristics. Hence, the sub-division of the 
observations by even/odd appears valid. 
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By using the two external validation sets it is possible to further test the predictive power of the two 
models. In doing so, we obtained the results that are summarised by the two figures below. The 
external Q2-values, Q2

ext, amount to 0.83 (RMSEP = 0.00090) and 0.80 (RMSEP = 0.00099) for the 
two models, which are similar to the internal Q2-values of 0.79 and 0.82. Based on these model 
performance statistics, we conclude that both cross-validation and validation by external prediction, 
yield similar estimates of an important quantity: the ability of the model to predict the ash content of 
new sugar samples. 
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Task 4 
By using OSC for signal correction and removing one component of unrelated X-information, we can 
see that it is possible to increase the predictive power for each model by 2%. This is shown in the 
second row of the table below. Interestingly, only one PLS component is necessary in both cases. For 
comparison, the corresponding results for MSC and SNV pre-processed calibration models are given. 
We can see that using MSC and SNV for signal correction gave no improvements in predictive power 
for this application. 

 

Model RMSEP(o) Q2
ext(o) A(o) RMSEP(e) Q2

ext(e) A(e) 
PLS 0.00090 0.83 2 0.00099 0.80 2 
OSC1 0.00084 0.85 1 0.00094 0.82 1 
MSC 0.00174 0.36 5 0.00173 0.33 5 
SNV 0.00163 0.43 5 0.00160 0.43 5 
1st Der. 0.00111 0.81 2 0.00122 0.73 2 
2nd Der. 0.00223 0.00 2 0.00258 0.00 2 

Caption to table: (o) training set odd-numbered observations and prediction set even-numbered 
observations; (e) training set even-numbered observations and prediction set odd-numbered 
observations; RMSEP = root mean square error of prediction for prediction set; Q2

ext = goodness of 
prediction for external prediction set; A = number of PLS components. 
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The two figures below show the relationships between predicted and observed ash contents for the 
two external prediction sets (OSC pre-treated data). 
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There is a slight improvement in predictive power (2%) when applying OSC to the SUGAR data. At 
first glance, such a small improvement might seem negligible, but ultimately it may be a decisive 
factor in upholding a competitive edge in production. OSC also works better than MSC and SNV in 
the current application. Since MSC and SNV have other underlying rationales than OSC (baseline 
removal and amplitude adjustments), this result is not completely surprising. Also, the MSC and SNV 
models are less parsimonious than the corresponding PLS and OSC1-PLS calibration models. 

Task 5 
By using OSC for signal correction and wavelet analysis for signal compression, we can see that we 
obtained results very similar to the case where only OSC was used (K = 571). We tested to save 
wavelet coefficients representing 95% (K = 8) and 99.5% (K approx. 330) of the total variance 
explained. We conclude that the addition of wavelet analysis did not add any extra predictive power, 
however, it enabled significant signal compression. 

 

Model RMSEP (o) Q2ext RMSEP (o) Q2ext 
PLS 0.00090 0.83 0.00099 0.80 

OSC1-PLS 0.00084 0.85 0.00094 0.82 
OSC1-Wav99.5%-PLS 0.00084 0.85 0.00094 0.82 
OSC1-Wav95%-PLS 0.00084 0.85 0.00094 0.82 
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The two plots below show the results of using 322 (odd-numbered training set) and 343 (even-
numbered training set) wavelet coefficients representing 99.5% of the total spectral variance. Note the 
similarity with corresponding plots in Task 4. 
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The two plots below show the results of using 8 (odd-numbered training set) and 8 (even-numbered 
training set) wavelet coefficients representing 95% of the total spectral variance. Note the similarity 
with corresponding plots in Task 4. 
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Conclusions 
It is possible to use fluorescence measurements to model and predict the quality of produced sugar. A 
predictive capacity (Q2) in the range 0.80-0.85 is considered to be very satisfactory for on-line 
situations. Such results have also been seen in additional studies done at other sugar plants across 
Scandinavia, where models of similar or even higher predictive abilities have been established. 

Furthermore, this example demonstrates the benefit of first conducting PCA followed by PLS. PCA 
often provides a good understanding of what is going on in a data set. In this way, the analyst is better 
prepared for subsequent PLS modelling which can be done faster and more accurately. 

There is a slight improvement in predictive power (2%) after applying OSC to the SUGAR data. At 
first glance, such a small improvement might seem negligible, but over time it may be a decisive 
factor in upholding a competitive edge in production. OSC is more appropriate than MSC and SNV in 
the current application because the latter have other underlying rationales than OSC (baseline removal 
and amplitude adjustments). Also, the MSC and SNV models are less parsimonious than the 
corresponding PLS and OSC1-PLS calibration models. 
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MVDA-Exercise NIR_Chip 
Multivariate characterisation and classification of wood chips 

Background 
In the particleboard industry it is important to understand the properties of the chips that are fed into 
the plant. Spectroscopic techniques, like NIR, are being increasingly used in the particleboard 
industry for on-line assessment of the quality of the starting material. This information is vital for the 
production of particleboard with the required properties. 

Objective 
The objective of this investigation was to examine whether four types of wood chip could be 
distinguished from each other using NIR characterisation and multivariate data analysis. 

Data 
This data set contains wood chips of four different categories (varying particle size, varying moisture 
content), compiled at a Northern particleboard factory. The primary data set has 140 observations 
(chip samples) and 1050 spectral variables. In this set, class assignment is known for each 
observation, i.e., there are four classes consisting of 35 samples each. In the secondary prediction data 
set, there are 78 additional observations of unknown class. 

 

Plot of spectral data for the training set: 
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Tasks 

Task 1 
Initiate a new project in SIMCA and import the primary data set NIRChipT.Sim and give the project a 
unique name. This data set has 140 observations and 1050 variables. In WorkSet|New|Scale select Ctr 
as base weight to centre all variables. Press Set. Go to Observations and define the four classes, thus: 
Class 1: 1-35; Class 2: 36-70; Class 3: 71-105; Class 4: 106-140. 

Task 2 
Compute an overview PCA-model. Cross-validation will suggest 12 components, but for overview 
purposes it is sufficient to consider PC1 and PC2. Create score and loading plots and interpret the 
model.  

Task 3 
Compute class-specific models for each class (Analysis|Autofit Class Models). Cross-validation will 
indicate rather too many components, but you should store three components for each class model. 
Then import the prediction data from the file NIRChipS.Sim and give this data set a unique name. Go 
to Predictions|Specify Predictionset|Dataset and select the secondary data set for predictions. Create 
DModX plots (Predictions|Distance to Model|X-block) for each class and evaluate the classification 
results. Try to ascribe a likely class membership for each observation in the prediction data set. 

Note: Here, we are interested in classification; therefore, in this exercise we should use DModX+. 
When the objective is to use DModX as a guidance for contribution plotting, we use the alternative 
measure DModX. 

Task 4 
Another method used to discriminate observations is called PLS-DA (Discriminant Analysis). Go to 
Analysis/Change Model Type and select PLS-DA. Run autofit and investigate the resulting t1/t2 score 
plot. Interpret the model. Is it possible to discriminate between the four classes of observations? 
Apply the PLS-DA model to the prediction data. Compare classification results with preceding task. 

Task 5 
Repeat the classification step of Task 3, but use more components than three for each class model. Is 
it possible to sharpen classification accuracy? There is no solution given to this task! 
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Solutions to NIR_Chip 

Task 2 
After two components R2X = 0.94 and Q2 = 0.94. The score plot shows some grouping according to 
class assignment. However, classes 3 and 4 seem to overlap. Particle size and moisture govern the 
separation among the chip samples. Samples 60, 88, and 139 are moderate outliers according to the 
DModX plot. The first loading spectrum resembles the average NIR spectrum in the low wavelength 
region, and the second loading spectrum captures a peak at higher wavelengths. 
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Task 3 
Four class-specific PCA models were computed and are summarised below: 

 

 

 

 
 

These models were executed on the 78 samples in the prediction set, the results of which are 
summarised below in four DModX-plots.  
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Observations 141-161 are classified as close to Class 1. 
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Observations 162-166 are classified as close to Class 2. 
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Observations 167-175, 177, and 192-201 are classified as close to Class 3. Samples 176, 178-191, and 
202-218 are also classified as comparatively similar to class 3. 
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Observations 203-209 are classified as very close to class 4. Samples 202 and 210-218 are classified 
as close to class 4. 
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Task 4 
The PLS-DA modelling yielded a highly significant three-component model, with R2X = 0.97, R2Y = 
0.61 and Q2 = 0.61. 

 
 

Usually in PLS there is an interest in plotting t/u score plots. However, PLS-DA is a special case 
where the plotting of t/t score plots is more relevant. This is because we want to see if the X-data 
carry class discriminating information. Indeed, the t1/t2 plot shown below indicates the existence of 
class discriminating information. The right-hand score plot below shows prediction results. Four 
clusters of observations are seen. A summary of the prediction (classification) results indicates: 

Observations 141-161 ⇔ class 1 

Observations 162-166 ⇔ class 2 

Observations 167-201 ⇔ class 3 

Observations 202-218 ⇔ class 4. 

However, note that the classification of samples 167-201 is not clear-cut. In the prediction score plot 
(right) parts of these samples are situated close to the area where we find class 2 observations in the 
training set score plot (left). This classification ambiguity with regard to class 3 was also observed in 
the previous task. 
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In order to see which variables carry class discriminating information, we look at the PLS weight 
spectra. 
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Apparently the left-hand part of the wavelength region reflects differences in the t1 (horizontal) 
direction. This component separates the observations based on particle size. The second component 
(t2, vertical direction) is heavily influenced by variables 725-811. This part of the spectral region 
(1848 – 2020 nm) contains discriminating information about chip moisture content. 

Conclusions 
The main conclusion drawn from this investigation is that NIR characterisation coupled with 
multivariate data analysis is useful for on-line discrimination of four types of starting material in the 
particleboard industry. Classification results ranged from good to excellent for the prediction data. 
The worst classification was for class 3 samples.  

The correct class memberships are as follows: 

• Observations 141-161 ⇔ class 1 

• Observations 162-166 ⇔ class 2 

• Observations 167-201 ⇔ class 3 

• Observations 202-218 ⇔ class 4. 

This study hints at how multivariate characterisation for classification of raw materials can be carried 
out when apparently the same starting material is delivered in different batches, or supplied by 
different manufacturers. This approach is common practice in the pharmaceutical and particleboard 
industries. 
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MVDA-Exercise CELLULOSE 
Modelling Viscosity of Cellulose Powder 

Background 
This example illustrates the use of spectral filtering and wavelet compression with multivariate 
calibration. 

The data set of this example was collected at Akzo Nobel, Örnsköldsvik, in Sweden. The raw material 
for their cellulose derivative process is delivered to the factory in form of cellulose sheets. Before 
entering the process the cellulose sheets are controlled by a viscosity measurement, which functions 
as a steering parameter for that particular batch. 

In this data set NIR spectra for 180 cellulose sheets were collected after the sheets had been sent 
through a grinding process. Hence the NIR spectra were measured on the cellulose raw material in 
powder form. For calculation of the calibration model 90 spectra were used. The remaining 90 spectra 
were used for model validation. 

Objective 
The objective of this study is to develop a good calibration model with the calibration set of 90 
samples and validate this model with the test set of 90 samples. 

We will use signal filtering to possibly improve the calibration model, and we will compress the X 
matrix, with wavelets, for efficiency and fast computation. 

The results of the model after filtering and compression will be compared with the results of the 
model with the original data. 

Data 
The data-set consists of:   

• X: 1201 wavelengths in the VIS-NIR region (400-2500) nm 

• Y: Viscosity of cellulose powder. 
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Tasks 

Task 1 
Create a new project in SIMCA by importing the data from CELLULOSE.DIF (File/New). Mark the 
first column in the data set as primary observation ID. Mark the second column (called Class ID) as 
secondary observation ID. Mark the third column (Viscosity) as the Y-variable. Mark the first row as 
primary variable ID. Finish the import 

With the dataset open and active, right click and select Plot Xobs to plot the spectra. What do you 
see? 

Task 2 
Divide the 180 observations into a calibration set (ClassID = 1) and a prediction set (Class ID = 2). 
(Hint: Go to Workset/New/Observations and apply the search function to the secondary observation 
ID.) 

When working with spectral data it is often appropriate to work with Pareto-scaled data. To Pareto-
scale and mean-center the spectral data, follow these steps: Select the Scale tab, and mark all the X-
variables. Under Set Scaling/Base select “Par”. Press Set. Now you have scaled the data appropriately. 

Fit a PLS-model to the calibration set (Class 1). Use this model to predict viscosity values for the 
predictions set (Class 2). This model will be our reference model. Review the fit and interpret the 
model. 

Task 3 
NIR data often contain systematic variation that is not related to the response Y. We will apply signal 
filtering to the X block (the NIR data) to remove variation that might not be of relevance for Y.  

SIMCA supports a number of spectral filters, including MSC, SNV, OSC, wavelets, and first and 
second derivatives. Explore the impact of these and see if the predictive power may be improved. 
Maintain the previous division of the observations in two classes, i.e., Class 1 = calibration set and 
Class 2 = prediction set.  

Create line plots of filtered (“corrected”) spectral data and evaluate the impact of the various filtering 
approaches. Compare external predictive ability. 

Task 4 
Swap the roles of Classes 1 and 2, and redo Task 3. 

 

There is no solution provided to this Task. 
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Solutions to CELLULOSE 

Task 1 
A plot of spectral data, prior to pre-processing, for all 180 observations is given below. We can see 
that the most extensive spectral variation occurs in the 1600-1800 nm region. 
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Task 2 
We fitted a PLS-model with 12 components, although cross-validation suggested only fivel. The plot 
below shows that cross-validation is in this case trapped by a first local peak in Q2. Further 
augmentation of the model leads forward to a second peak. The best predictions for the prediction set 
are obtained with 12 components. Experience also shows that rather many components are often 
needed with NIR-data. Hence, we decided to use 12 components. 

As shown by the summary table, the second component captures a lot of spectral variation that is not 
particularly related to the viscosity mearsurements. 

0.00

0.20

0.40

0.60

0.80

1.00

C
om

p[
1]

C
om

p[
2]

C
om

p[
3]

C
om

p[
4]

C
om

p[
5]

C
om

p[
6]

C
om

p[
7]

C
om

p[
8]

C
om

p[
9]

C
om

p[
10

]

C
om

p[
11

]

C
om

p[
12

]
cellulose.M1 (PLS-Class(1)), PLS reference modelR2Y(cum)

Q2(cum)

 



 

Copyright Umetrics AB, 02-12-18  Page 4 (8) 

The line plots of w*1 – w*3 show how the various spectral regions contribute to the first, second, and 
third components. It is reasonable to focus on these three as they capture almost 97% of the variation 
of Y. The other components are small corrections. The wavelength regions 950-1100, 1600-1825 and 
1950-2100 carry a lot of information. 
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The predictive power is documented in the two plots below, after 12 and 5 components. External 
RMSEP is lower with 12 components. One way to get hold of the external Q2 is to use the Show/Hide 
regression line-button in SIMCA. The R2 displayed is equivalent to Q2

ext, and a value of 0.78 must be 
considered very good in the light of the cross-validated Q2

int of 0.80. 
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Task 3 
In all the models presented below, we did not change default scaling in the spectral filtering routines. 
However, when doing PLS analysis on the filtered data, default scaling (Ctr) was changed (to Par) for 
all X-variables. 

Orthogonal signal correction - 1:  One OSC-component was computed removing 69% of X. The 
resulting PLS-model based on the filtered data has 9 components. External predictive power, Q2

ext, is 
= 0.793.  
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Orthogonal signal correction - 2:  Two OSC-components were computed removing 82% of X. The 
resulting PLS-model based on the filtered data had 1 component. External predictive power, Q2

ext, is = 
0.795.  
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Standard normal variate:  The resulting PLS-model based on the filtered data has 9 components. 
External predictive power, Q2

ext, is = 0.800.  
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Multiplicative signal correction:  The resulting PLS-model based on the filtered data has 9 
components. External predictive power, Q2

ext, is = 0.793. 
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1st derivative:  The resulting PLS-model based on the filtered data has 6 components. External 
predictive power, Q2

ext, is = 0.675. The SG-smoothing was accomplised using a window size of five 
points and a qudratic polynomial. 
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2nd derivative:  The resulting PLS-model based on the filtered data has 6 components. External 
predictive power, Q2

ext, is = 0.538. The SG-smoothing was accomplised using a window size of eleven 
points and a qudratic polynomial. 
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OSC2 and wavelet compression: In addition to the OSC2 filtering, compression of spectral data was 
accomplished using Dau-4. Energy retained was by variance, and compression method was DWT. By 
storing 16 wavelet coefficients 95% of the variance in X is explained. The resulting PLS-model based 
on the filtered and compressed data has 1 component. External predictive power, Q2

ext, is = 0.786. 
This implies a compression efficiency of 98.7% (16/1201) with no loss of predictive power. 
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Conclusions 
This example illustrates how signal filtering and compression can be used in multivariate calibration. 
NIR data often contain large systematic variation not related to Y, such as baseline shifts etc. Hence, 
signal filtering may improve model transparency. In this example OSC, SNV, and MSC performed 
well, a far better than derivation. The coupling of OSC and wavelet compression showed that the 
signal could be efficiently compressed 1201 to 50 data points without any loss of information. An 
attractive property of OSC is that it actually makes a model of what was peeled-off from the X-matrix. 
The OSC loadings p1 and p2 plotted below indicates which spectral regions were modified by OSC, 
i.e., predominantly between 1600 – 1800 and 1850 – 2500 nm. 
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MVDA-Exercise SOVRING 
Process monitoring and optimisation of a mineral sorting plant 

Background 
Multivariate methods are becoming increasingly common in the mining industry. The current data set 
originates from LKAB in Malmberget, Sweden, where multivariate data analysis has been very 
successful and is currently used as a natural part of process development. In this case the main goal 
was to find a way to control the amount and quality of the two products PAR and FAR. The process 
set points were varied according to an experimental RSM design in the variables (factors) Ton_in, 
HS_1, and HS_2. 

Objective 
We want to answer the following questions: 

• Can the data be used to model the process? 

• Is it possible to monitor and identify process upsets? 

• Are there trends, groups, or different states of the process? 

• Can we understand and interpret the relationship between input and output variables? 

• Can we make predictions? 

• What are the best conditions to maximise amount and quality of product? 

Data 
X-variables (Predictors) 
Total feed Ton_in Design variable 
Load crusher 30 KR30_IN  
Load crusher 40 KR40_IN  
PARmull PARM  
Speed separator 1 HS_1 Design variable 
Speed separator 2 HS_2 Design variable 
Power crusher 30 PKR_30  
Power crusher 40 PKR_40  
Waste rock GBA  
Load separator 3 TON_S3  
Tailing crusher KRAV_F  
Tailing total TOTAVF  
 

Y-variables (Responses) 
Amount concentrate type 1 PAR 
Amount concentrate type 2 FAR 
Relative amount r-FAR 
Iron in FAR (quality) %Fe_FAR 
Phosphorous in FAR (quality) %P_FAR 
Iron content in crude ore (quality) %Fe_malm 
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Tasks 

Task 1 
Import the data file SOVRING.XLS and create a SIMCA project with a unique name. The data set has 
572 observations and 18 variables. During the import, set the column labeled “ONUM” as the primary 
observation ID, and the two columns labeled “Date/Time” and “Select” as secondary observation 
ID.s. Three of the variables have more than 50% missing data because laboratory measurements were 
not performed for all observations. SIMCA checks for missing data at the import and warns if the 
limit 50% is exceeded. In this case it is OK to include all variables since the missing data are well 
distributed in the data table. The first step is to make an overview of the data, a PC model with 2 
components. Plot the scores and loadings of this model. To make the observation names more 
informative (time), use positions 7-10 as label (right mouse button-click, Properties|Label Types, 
Start 7, Length 4). Interpret what you see and check your conclusions with additional tools. Hint: 
make contribution plots (scores mode), time series plots (Analysis|Scores|Line plot), and inspect your 
data table. Save the model and give it an informative name (for example “all data”). To give all 
models concise names is good practice.  

Exclude the extreme observations and compute a new PC model. In this case it is justified to remove 
the deviating observations because there is a logical reason for doing so (no material feed). The 
resulting score plot will now be more interesting. Check the correlation structure of the variables. 

Task 2 
Now, we are going to create a PLS model incorporating all X- and Y-variables. Before any 
calculations can be made we have to select observations in which the design was made and therefore 
have response data. The observations that have missing data in the responses are marked with an “O” 
in the third column. The observations that have measured data in the responses are marked with an 
“S” in the third column. Make a selection with the “FIND” function 
(Workset|New|Observations|Find) searching for “O”-marked observations. Exclude the selected 
observations and use the remaining 85 ones. 

a) Define variables 1-12 as X and variables 13-18 as Y. Expand the design variables (1, 5, 6) 
with cross and square terms: (Expand|Square and Cross). Fit the PLS model. Check the cross-
validation value (Q2). Study the distribution of observations (Analysis|Score|Scatter plots). 
Which type of diagnostics are available and appropriate? Examine the correlation between the 
variables. 

b) What is the difference between loading plots and coefficient plots? Make sure that you 
understand the meaning of VIP. Check the correlations between the design variables and other 
measured variables. 

c) How should we optimise the system if we want to maximise the amount of iron and 
simultaneously minimise the amount of phosphorous? Illustrate this with contour plots and 
discuss the problems with this presentation technique. 

d) There is a clear indication that the amount of product and the quality of product are dependent 
on different X-variables. Do we have something to gain by making different models for the 
amount of product and quality of product, that is, one model for responses 13-15 and another 
for responses 16 and 17? Do not forget to expand the three designed X-variables. Compare 
the results with those from the model containing all response variables. Which conclusions 
can you draw?  

e) Response variable no 18 is very difficult to measure. Use the first PLS model and make 
predictions for no 18 for all observations. Which model parameter is important to check when 
making predictions of response variables? Illustrate the variation in Y18 with time. Hint: Use 
Predictions|Time series, select YPredPS and YVarPS as items for the variables. 
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Task 3 
Use the same selection of observations as in the previous task. Choose the response PAR. Make a PLS 
model using only the design variables (var 1, 5 & 6) with expansions as X and compare with a model 
with the twelve original variables as X (design variables expanded). Compare R2Y. Also, check what 
happens when you make contour plots with different models and discuss the outcome and problems 
with correlated predictors. 

Solutions to SOVRING 

Task 1 
A PC model with all variables as X was computed. The two first components explained 79% of the 
variability in the data. 

 
 

In the score plot we see that the process has behaved differently on two occasions. We can also see 
that the process is moving between clusters due to different settings in the process parameters. The 
variable plot and the contribution plot tell us that the process feed rate is very low -- and that all 
parameters correlated to this phenomenon are low -- when we are positioned in the left-hand part of 
the score plot. 
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The two extreme areas to the left represent the 
start of the process and a short, temporary shut 
down. 

The same picture as the left one, but with the 
points connected with a line, called line plot. It is 
easier to see how the process evolves over time. 
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The variable plot is dominated by the fact that the 
process has been shut down on two occasions. It 
is not recommended to make any other 
conclusions of the correlation structure among 
the variables. Just conclude that all the variables 
to the right are low when the process is to the 
left. 

With the contribution plot we can focus on a 
specific observation. In this case why is 
observation 2 deviating from the grand average? 
We can see that almost all the variables are low 
for observation 2. Check with the raw data. 

Task 2a 
With variables 1-12 as X and variables 13-18 as Y, and variables 1, 5, and 6 expanded with cross and 
square terms, you will produce a PLS model with 6 components. 
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The two first components are clearly the most important. The graphs shown below are created under 
Analysis|Summary|X/Y overview|Plot. To change the component number, right click in the plot and 
select Properties in the menu.   

0.00

0.20

0.40

0.60

0.80

1.00

PA
R

FA
R

r_
FA

R

%
Fe

_F
AR

%
P_

FA
R

%
Fe

_m
al

m

SOVRING.M2 (PLS), PLS with expanded termsR2VY[1](cum)
Q2VY[1](cum)

 

0.00

0.20

0.40

0.60

0.80

1.00

PA
R

FA
R

r_
FA

R

%
Fe

_F
AR

%
P_

FA
R

%
Fe

_m
al

m

SOVRING.M2 (PLS), PLS with expanded termsR2VY[2](cum)
Q2VY[2](cum)

 

According to the component contribution plot, the variability in PAR is explained by the first 
component, whereas FAR and r_FAR need one extra component. The chemical information is 
modelled by components 2-6. We may conclude (see w*c1/w*c2 plot) that the total feed and the 
quality are affected by different factors in the process. One important and difficult parameter to 
measure is %Fe in to the process. It is modelled well by the 3rd component. 
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The t1/u1 score plot shows an obvious strong correlation between X and Y. In the t1 vs t2 plot we can 
see that the process is stationary at the different design points. The stability for different settings of 
the process parameters is also clearly shown in the Num vs t-plots. There are no deviating 
observations. 
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The controlled variable Ton_in (total feed) correlates with many of the measured variables. The 
interesting point is that the important quality responses are correlated to other variables than the feed 
variables. For example %P_Far is orthogonal to total feed and is mainly connected to HS_2, which is 
another controlled variable.  

Diagnostics of the residuals is an important issue. In the N-Plot you can check if the residuals are 
normally distributed. The X-axis represents the standard deviation of the residuals. All observations 
are within ±3SD and lie on a straight line for the response PAR. It might be interesting to check 
observation 403. Do not forget the tools Distance to Model for X and Y-blocks. What is the difference 
between all these plots? 
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Task 2b 
Even when there are many components in the model, the first loading plot is usually the most 
interesting. It will show the main correlation structure between the variables and how all responses 
are connected (the design variables are ringed). The coefficient plot is very useful, especially in 
models with many components. This example is a typical illustration of when we really need the 
coefficients to understand the influence on all the responses. The loading plot together with the 
coefficients is a good variable map. VIP gives a normalised order of importance of all X variables in 
the total model.  
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Task 2c 
So far we expect that high production and a minimum of P with maximum of Fe in the product, are 
achievable goals. How well we are able to fulfil these goals is not so simple to understand from only 
the model. A convenient way of illustrating this is with contour plots of the responses. The problem in 
the multivariate case is that a contour plot is dependent on two orthogonal axes and will have to set 
the other X variables at a constant level. There is a risk that this could be incorrect due to correlations 
between the X variables. When one X variable is varied others will go together with it and cannot 
therefore be considered as constant. To illustrate this we will make different models later to check the 
influence of this problem. 

Task 2d 
A PLS model was computed with X-block 1-12 and Y-block 16-17 (product quality). This resulted in 
a model with only four components.   

 
 

This model is similar to the overall model with all Y-data. 
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In the t1/u1 score plot all observations with the same settings for X are close to each other. Below we 
see that there are no residual distribution problems for this model. 
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In the loading plot we can see that %Fe_FAR and %P_FAR are negatively correlated, as expected. 
Before you study the loading plots and the coefficient plots examine the t1/t2 score plot and the 
distance to model plots to check for unexpected groupings and outliers. 
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Task 2e 
In the prediction graph below we can see the small errors in the predictions. Moreover, the DModX 
plot shows where the model is unreliable.  
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Task 3 
The first model uses only the designed X variables; Ton_in, HS_1 & HS_2, with cross and square 
term expansions. 

 
 

0.00

0.20

0.40

0.60

0.80

1.00

Comp[1] Comp[2]

Comp No.

SOVRING.M4 (PLS), X design Y PARR2Y(cum)
Q2(cum)

-1.00

-0.80

-0.60

-0.40

-0.20

0.00

0.20

0.40

0.60

0.80

1.00

-1.00 -0.80 -0.60 -0.40 -0.20 0.00 0.20 0.40 0.60 0.80 1.00

w
*c

[2
]

w *c[1]

SOVRING.M4 (PLS), X design Y PAR
w*c[Comp. 1]/w*c[Comp. 2]

 

Ton_

HS_1
HS_2

PARTon_in*HS_

Ton_in*HS_
HS_1*HS_2Ton_in*Ton

HS_1*HS_1

HS_2*HS_2

 

The second model contains all X variables with expansion in the design variables. 
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Both models are very similar in the explanation of Y. The contour plots are, however, very different 
with regard to both shape and level. The correct plots are the ones on the left. These are constructed 
from only the design variables. The other contour plots are misleading because all variables (except 
the two in the plot) have to be kept constant, which is unrealistic due to the strong correlations among 
the X-variables.  

Ton_in set to its low value (845 t/h): 

 



 

Copyright Umetrics AB, 02-12-18  Page 14 (14) 

Ton_in set to its centre value (1252 t/h) 

 

Ton_in set to its high value (1658 t/h) 

Conclusions 
This example shows that statistical experimental design in the dominating process variables gives data 
with high quality that can be used to develop good predictive process models. By initiating the data 
analysis with PCA, it was possible to discover two periods corresponding to no or low feed of starting 
material. These were excluded in the PLS analysis. The PLS model founded on the set of 85 
representative samples, enabled excellent predictions of PAR and FAR. The prediction quality was a 
little lower for the other responses. However, prediction of iron content in incoming ore can be 
accomplished with reasonable confidence. 
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MVDA-Exercise PROC1A 
Fault Detection using Control Charts 

Background 
This example deals with a chemical production plant manufacturing a polymer. It is a continuous 
process which went out of control at around time point 80 after a fairly successful campaign to 
decrease the side product (y6). 

Objective 
The manufacturing objective was to minimise the yield of side product (y6) and maximise product 
strength (y8). The data analysis objective of this exercise is to investigate whether MSPC could have 
detected the process upset earlier and thus prevented the shutdown. 

Data 
The data set contains 33 variables and 92 hourly observations. The measured variables are distributed 
as seven controlled process variables (x1in – x7in), 18 intermediate process variables (x8md – xpen), 
and eight output variables (y1 – y8). All the data are coded so as to not reveal any proprietary 
information. 

Tasks 

Task 1 
Create a new project by reading in the spreadsheet PROC1A.xls. Use Plot/Lists|Time Series Plot to 
look at the raw data in blocks of 8-9 variables. Can you spot anything unusual about the latter 
observations? 

Task 2 
Make a new WorkSet. Exclude observations 70-92 and compute a PC model to overview the data. 

Task 3 
Use Predictions|T Predicted or Plot/List/Line Plots to generate a T Predicted scatter plot of all the 
observations. Confirm that observations 80-92 fall outside the tolerance region. 

Task 4 
Use Predictions|Contribution|Scores/T2 to find how observation 80 differs from the average 
observation (use pp 1,2 weighting). Which are the most deviating variables at this time point? Use 
Predictions|Contribution|Distance to Model X-block to investigate why observation 33 is a moderate 
outlier. 

Task 5 
Make a Shewhart control chart (Plot/List/Control Charts) of T2 (the combined scores). Experiment 
with other control charts as well. Make CuSum plots for t1 and t2 and try to interpret them. Make 
combined Shewhart/EWMA plots with low lambda (long memory), and high lambda (short memory) 
and observe the effect of changing lambda. 
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Solutions to PROC1A 

Task 1 
Below are time series plots of the first 8 variables and the complete set of 33 signals. It is not easy to 
spot any deviations apart from the spikes although it is known that the process went out of control at 
time point 80 and eventually had to be shut down. 
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Task 2 
A PC-model was fitted to the first 69 samples. Eight components were obtained using cross-
validation, but we will use only the first three which explain 51% of the variation.  
 

 
 
Now, we are going to use the historical data to define control limits within which the process is in 
control. One type of control limit is provided by Hotelling’s T2 which models the deviation of the 
process within the PC-model hyperplane. The first 69 observations fall inside the 95% tolerance limit 
(below, left). A second type of control chart is provided by DModX (below, right) which monitors the 
deviation of the process from the PC-model hyperplane. There are several samples which exceed the 
critical limit of DModX. Usually, deviating observations in DModX indicate minor process upsets not 
captured by the model. However, if many observations in a sequence show consistently high DModX-
values, then that is normally an indication of a new process event.  
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Task 3 
The model obtained was applied to the remaining 23 observations (70-92). The score plot indicates 
that the last 13 observations fall outside the tolerance region, suggesting that a new process behaviour 
has occurred. Actually, the shift in process operating conditions is seen already from time point 70. It 
might also be worth inspecting observation 33 more closely, as it displays the highest DModX among 
the training set observations. 
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Task 4 
The contribution plot for observation 80 is shown below and highlights which variables are 
contributing to the difference between observation 80 and the average process point. Evidently, 
compared with the average process point, observation 80 has significantly lower values for variables 
x1in, xemd, xgnx, xoen, and xpen.  
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Furthermore, moderate outliers can be inspected in a contribution plot of DModX. As an example, 
consider the contribution plot of observation 33. It is mainly the two variables xbmd and xmen which 
cause the large residual for this observation. 
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Task 5 
The graphs below represent time series plots of the first two predicted scores (t1 and t2). The process 
drifts significantly in both scores until the end of the campaign when mainly negative values for both 
scores are apparent. 
 

 
 
 
The T2-control chart below shows the problem at the end of the sampling campaign. We can also see 
how a number of spikes in the residual data are detected using DModX. 
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The two CuSum charts below give early warning of problems. The CuSum chart is designed to detect 
shifts in the mean and that is what happens as the process target values are changed during the 
optimisation campaign. 
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With low lambda (0.05) the EWMA graph is only slowly affected by the changes in t1 and a smooth 
curve is generated. 

 

 
 
 
As lambda increases (in plot below = 0.4) the EWMA graph more closely resembles the original 
Shewhart plot. 
 

 
 
 
A value of lambda = 0.2 is often used when EWMA is used for forecasting, providing a good balance 
between memory and adaptability. 

Conclusions 
Multivariate modelling provides the means to monitor and supervise this process. The score plot of 
t1/t2 elegantly shows how the process moves around in space before finally going out of control. In 
practice, inspection of control charts of T2 and DModX would have provided early indications of the 
process problems. 
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MVDA-Exercise Baker’s Yeast 
Batch modelling (BSPC) of a Baker’s yeast process 

Background 
The production of Baker’s yeast takes about 14 hours for the final production stage. In this data set, 
each batch showed variability due to changes in the type of molasses used, temperature, pH, etc. 
Multivariate data analysis was the preferred choice to overview the data. We thank Jästbolaget AB for 
the data set.  

Objective 
The objective of this study was to determine if the yeast manufacturing process could be monitored 
more efficiently than by examining each individual variable. It was also interesting to establish 
predictive models for the final quality of the yeast. 

Data 
There are 33 batches, of which 20 were selected as reference batches. All batches have the same 
length, 83 observations. Altogether there are 33*83 = 2739 observations.  

Observation names (“IDs”): 

• Pos1 “r” for reference observations, “t” for test observations 

• Pos2 Batch identifier 

• Pos3,4 Observation order number in the batch (1-83) 

Variable names (for observation level): 

• Ethanol 

• Temp Temperature 

• Molasses Feed of molasses 

• NH3 NH3 feed 

• Air Air flow 

• Level Level in tank 

• pH 

 

Variable names (for batch level): 

• X: Innoc Total amount of dry substance added at start (in kg) 

• Y: QP1 Quality Parameter 1 (to be high) 

• Y: QP2 Quality Parameter 2 (to be high) 

• Y: Amount Total amount of product (yeast) at batch termination (in kg) 

• Y: Yield Amount of yeast (corrected for amount of molasses used) 
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Tasks 

Task 1 (Observation level) 
Make a batch project in SIMCA. Find the file Bakers Yeast Primary.XLS. In the Import Data Wizard 
dialog check the box “SIMCA-P Batch Project”. Press Next. Then mark the first column as Batch ID. 
The batch identifier is in position 2 and has length 2. Press OK.  This will create a new column in the 
data-set. There are no phase identifiers in the batches. 

 

Now mark the second column (which used to be the first column) and set it as Secondary Observation 
ID. Also mark the five right-most columns (Innoc, QP1, QP2, Amount & Yield) as Initial Condition 
Variables (they will not be used on the observation level). Press Next, Next and Finish. SIMCA will 
now autogenerate batch time. 

Select the 20 reference batches (Ba, Ca, Ia, Ma, Na, Qa, Ra, Ta, Va, Xa, Za, ab, bb, cb, db, eb, fb, gb, 
hb & ib).  

Make a PLS-model vs time. Look at the score plot t1/t2 and the control charts (Analysis/Batch Control 
Charts). Interpret the model. 

Task 2 (Observation level) 
Import the secondary data set (File/Import Secondary Dataset and select the file Bakers Yeast 
Secondary.XLS). Note: You have to specify this data set identically to the primary data set. This data 
set includes data for ten batches. 

Use Predictions/ Specify Predictionset and select the newly imported data. Monitor the unmodelled 
batches in terms of the various batch control charts (Predictions/Batch Control Charts).  

The thirteen unmodelled batches are Aa, Da, Ga, Ha, Ja, La, Oa, Pa, Ua, Ya, jb, kb & lb. Classify the 
batches. How do they comply with the control limits? Only four test batches have developmental 
trajectories very similar to those of the 20 reference batches – which? You may also want open the 
XLS-file (for the secondary data set) to watch the Y-variables. 
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Task 3 (Observation level) 
In order to highlight how contribution plotting can help us to interpret deviations (i.e., to find 
“assignable causes”) we are going to focus on batches Ja, and Pa. Batch Ja deviated at the beginning 
and in the middle, but was OK at the end. Batch Pa deviated towards the end where it produced 
ethanol instead of yeast.  

Make a score contribution plot for these batches to understand how they deviate.  

Hint: Use the Contribution Tool from the Marking Toolbar and double-click in any interesting score 
or DModX-plot. 

Task 4 (Batch level) 
Create a batch level project in File | Create Batch Level Project and switch to this project. Bring the 
scores from the observation level. Do not forget to click Bring secondary dataset to the batch level 
project. 

Now we are going to use the initial condition (Innoc) and response (QP1,QP2, Amount, Yield) 
variables together with the scores from the lower level project. Set the four response variables a Y. 

Change model type to PCA-X. Autofit this model. Use this model and make classify the batches in the 
secondary data set. Which four batches evolve as the 20 reference batches?  

Task 5 (Batch level) 
Your next step is to make the batch level PLS model. However, because the four response variables 
are correlated in groups of two (QP1/QP2 and Amount/Yield) we will develop two PLS models 

The first PLS model will have Amount and Yield as Y, and all other variables as X. Keep the batches 
Ba, Ca, and Va in the data set although they have missing Y-data, since their X-data stabilise the X 
matrix.  

Compute 2 components. Use this model to predict Amount and Yield for the test batches. What can 
you say about the predictive qualities of the model? 

Study the coefficient plot to establish the influence of the scores on Amount and Yield. What can you 
say about the predictive power? 

Task 6 (Batch level) 
Repeat Task 5 but select the two responses QP1 and QP2. Is it possible to predict these two quality 
parameters for the test set batches? 

 

There is no solution provided to this task!!!! 
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Solutions to Baker’s Yeast 

Task 1 
A three-component model was obtained. 

 
 

In the t1/t2 score plot we can see a similar performance profile for all bathes. 
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Then we evaluate the batch control charts for t1-t3, DModX, Hot T2, and TimePred. 
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A good new batch should evolve similar to the reference batches and its trace should stay within the 
control limits. 
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Task 2 
For reasons of brevity only two control charts (t1 & DMoDX) are plotted for each test batch. This is 
reasonable since the first score vector explains most of the variance.  

Aa – Minor problems & low yield Da – OK all the way                                                

Ga – Problems in the middle, OK at the end 

 

Ha – Problems in the middle, OK at end 

Ja – Problems at start, OK at the end 

 

La – Early high DModX, but finally OK 

 
Oa – Problematic batch with low yield 

 

Pa – Failing batch which produced ethanol 
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Ua – Problematic batch with low yield 

 

Ya – Problematic batch with low yield 

 
 

jb – OK all the way 

 

kb – OK all the way 

 
lb – OK all the way 
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Task 3 
The left-hand score contribution plot below contrasts Ja at time point 6 with the average batch. The 
variable that is responsible for the deviation of Ja is pH, which is more than 8 standard deviations 
higher than for the average batch. Similarly, the right-hand plot, developed for time point 75, suggests 
that the increase of ethanol is almost 7 standard deviations for batch Pa.  
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Many other contribution plots may be developed for the rest of the batches, but such an exercise is not 
pursued here. 

Task 4 
PCA with cross-validation indicates four large principal components with R2X = 0.77 and Q2X = 
0.51. 
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The score plot below shows a homogenous distribution of the batches. Only two out of the 20 batches 
are positioned outside the tolerance volume of the model, which is OK. 
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The results of the classification phase are seen below. Based on their trajectorial properties five 
batches Ya, Ga, Ha, Ja, and Oa are found very different from the 20 reference batches (left-hand score 
plot below). The right-hand DModX plot identifies the four batches Da, jb, kb, and lb to best conform 
with the 20 reference batches. Being close to Dcrit, batches like Aa, La, and Ua are also classified as 
rather similar to the reference batches. 
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We may use a contribution plot to investigate why Ya is so remotely positioned in the score plane. 
The contribution plot (scores mode) -- use the contribution tool and double-click on Ya in the score 
plot -- below suggests that Ya behaves differently in score t2 in the time interval 47-56. The top peak 
occurs at time point 51. 
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A simple double-click on e.g. the coefficient at time point 51 will reveal how the seven original 
variables are behaving at this occasion. As shown by the plot below, it is mainly ethanol that is 
problematic and it is 12 standard deviations higher for Ya than for the average reference batch. 
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Task 5 
A two-component PLS model was computed. 

 
To interpret the model we may look at the loadings or the coefficients. The first coefficient plot 
relates to Amount. Here we see the influence of the scores as function of batch maturity. First comes 
Innoc, then t1: 0-82, then t2: 0-82, then t3: 0-82. Use the plot magnifier, Scale X, to look closer at this 
plot. 

This response depends to a great extent on the initial condition variable Innoc, but it can be seen that 
contributions from many of the score variables are not negligible. Particularly, t1-score variables in 
the time spans 3 – 9 and 78 – 82 correlate significantly with Amount. The latter time segment is 
important also for the t2- and t3-based score variables. Hence, knowing Innoc alone is inferior 
compared with using also the score trajectories when modelling Amount. 
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The second coefficient plot reveals which variables are influential for Yield. Essentially, the first ten 
and the last ten time points of t1 dominate the model. The extent to which the second and third set of 
score variables participate in the model formation is much lower. Knowing the amount of explained 
variance by the first component of the lower level model, this fact is perhaps not so surprising.  
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We now move on to the prediction phase. In order to see how the 13 test batches were accommodated 
by the model, we created the predicted score plot seen below (left-hand plot). Test batches are marked 
by squares and reference batches by triangles. There are five test batches positioned quite far outside 
the Hotelling’s T2 tolerance region, i.e., test batches Ga, Ha, Ja, Oa, and Ya. The right-hand plot 
below is an enlargement of the area around the tolerance region. Here we can spot that also test 
batches La and Pa are outside, but not by much. The remaining six test batches (Aa, Da, Ua, jb, kb, 
and lb) fit the model much better. 
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The DModX and DModY residual plots point in the same direction, i.e., that five batches (Ga, Ha, Ja, 
Oa, and Ya) are very different from the reference batches, whereas La and Pa are more similar. 
Strictly speaking, however, only four test batches comply perfectly with the model, Da, jb, kb and lb. 
These were the batches detected already on the observation level. 
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We will now test the predictive ability of the model. The two plots below display the relationship 
between measured (“observed”) Amount and the corresponding values computed by the model. It is 
clearly evident that five batches (Ga, Ha, Ja, Oa, and Ya) are very poorly predicted. This exactly the 
quintet of batches identified above as not fitting the model. Any prediction computed for anyone of 
these five batches would correspond to a large extrapolation outside the model validity range and 
hence be very uncertain. Consequently, these five tricky batches were removed (see prediction results 
in right-hand plot below). The external RMSEP computed only on true test batches amounts to 216. 
This corresponds to a Q2

ext of 0.67, which is an excellent result.    
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The next set of plots reflect predictions of Yield. If the five non-conformant test batches are omitted, 
RMSEP becomes 0.039 and Q2

ext = 0.52 for the remaining test batches. These results are also very 
encouraging. 
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Conclusions 
Twenty reference batches were used to train a model to recognize “good” operating conditions. This 
model was able to categorize between good and problematic batches. Predictive power of the upper 
level PLS model was very good for test batches, except for five batches that were clearly 
unrepresentative cases. 
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